Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Electromagnetic metamaterials

Simplicity unlocks complexity

By carefully selecting only two elemental 'building block materials' at the nanoscale, it is possible to digitally design composite electromagnetic media with properties vastly different from their individual constituents and suitable for performing complex optical functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the digital metamaterials approach.

References

  1. Shannon, C. E. A Symbolic Analysis of Relays and Switching Circuits Master's Thesis, MIT (1937); Trans. Am. Inst. Elect. Eng. 57, 713–723 (1938).

    Google Scholar 

  2. Boole, G. The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning (Macmillan, Barclay & Macmillan, 1847).

    Google Scholar 

  3. Della Giovampaola, C. & Engheta, N. Nature Mater. 13, 1115–1121 (2014).

    Article  Google Scholar 

  4. Engheta, N. & Ziolkowski, R. Electromagnetic Metamaterials: Physics and Engineering Explorations (IEEE–Wiley, 2006).

    Book  Google Scholar 

  5. Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

    Google Scholar 

  6. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  7. Schurig, D. et al. Science 314, 977–980 (2006).

    CAS  Google Scholar 

  8. Pendry, J. B. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  9. Salandrino, A. & Engheta, N. Phys. Rev. B 74, 075103 (2006).

    Article  Google Scholar 

  10. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  11. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Science 308, 1686–1701 (2007).

    Article  Google Scholar 

  12. Silveirinha, M. & Engheta, N. Phys. Rev. Lett. 97, 157403 (2006).

    Article  Google Scholar 

  13. Dal Negro, L. Optics of Aperiodic Structures: Fundamentals and Device Applications (Pan Stanford, 2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Dal Negro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Negro, L. Simplicity unlocks complexity. Nature Mater 13, 1080–1081 (2014). https://doi.org/10.1038/nmat4146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4146

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing