Skip to main content Accessibility help
×
  • Cited by 462
Publisher:
Cambridge University Press
Online publication date:
July 2009
Print publication year:
2007
Online ISBN:
9780511551154

Book description

Low Reynolds number aerodynamics is important to a number of natural and man-made flyers. Birds, bats, and insects have been of interest to biologists for years, and active study in the aerospace engineering community, motivated by interest in micro air vehicles (MAVs), has been increasing rapidly. The focus of this book is the aerodynamics associated with fixed and flapping wings. The book considers both biological flyers and MAVs, including a summary of the scaling laws which relate the aerodynamics and flight characteristics to a flyer's sizing on the basis of simple geometric and dynamics analyses, structural flexibility, laminar-turbulent transition, airfoil shapes, and unsteady flapping wing aerodynamics. The interplay between flapping kinematics and key dimensionless parameters such as the Reynolds number, Strouhal number, and reduced frequency is highlighted. The various unsteady lift enhancement mechanisms are also addressed.

Reviews

"The authors of this book, active pioneers of this new field, have assembled the first comprehensive treatment of the major new aerodynamic aspects pertaining toMAVs...It is well written and illustrated with 29 color and 130 black and white figures. It also has a quite comprehensive reference list. Therefore, it should be of value to scientists and engineers who wish to familiarize themselves with theaerodynamics of birds, insects, and micro air vehicles. In addition, students and anyone else who wishes to learn about the intricacies of aerodynamic lift and thrustgeneration will bene!t from reading parts of this book."
Max F. Platzer, AIAA Journal

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Albertani, R., Hubner, P., Ifju, P. G., Lind, R., and Jackowski, J. (2004). Wind tunnel testing of micro air vehicles at low Reynolds numbers, SAE Paper 2004-01-3090, presented at the SAE 2004 World Aviation Conference, Reno, NV.
Alexander, D. E. (2002). Nature's Flyers (Baltimore/London, Johns Hopkins University Press).
Alexander, R. M. (1976). Mechanics of bipedal locomotion, in Davies, P. S. (Ed.), Perspectives in Experimental Biology (Oxford, Pergamon Press), pp. 493–504.
Alexander, R. M. (1997). The U J and L of bird flight, Nature (London) 390, 13.
Anders, J. B. (2000). Biomimetic flow control, AIAA Paper 2000–2543.
Anderson, J. D. Jr. (1989). Introduction to Flight (New York, McGraw-Hill).
Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency, Journal of Fluid Mechanics 360, 41–72.
Aono, H., Liang, F., and Liu, H. (2006). Near- and far-field aerodynamics in insect hovering flight: An integrated computational study, Journal of Experimental Biology (submitted).
Aymar, G. C. (1935). Bird Flight (New York, Dodd and Mead).
Azuma, A. (1983). Local Momentum and Local Circulation Methods for Fixed, Rotary and Beating Wings, Thesis, Institute of Interdisciplinary Research, Faculty of Engineering (Tokyo, University of Tokyo).
Azuma, A. (1992). The Biokinetics of Flying and Swimming (Tokyo, Springer-Verlag).
Barut, A., Das, M., and Madenci, E. (2006). Nonlinear deformations of flapping wings on a micro air vehicle, AIAA Paper 2006-1662.
Bass, R. L., Johnson, J. E., and Unruh, J. F. (1982). Correlation of lift and boundary-layer activity on an oscillating lifting surface, AIAA Journal 20, 1051–6.
Bechert, D. W., Bruse, M., Hage, W., and Meyer, R. (1997). Biological surfaces and their technological application–laboratory and flight experiments on drag reduction and separation control, AIAA Paper 97-1960.
Berger, M. A. M. (1999). Determining propulsive force in front crawl swimming: A comparison of two methods, Journal of Sports Sciences 17, 95–105.
Betz, A. (1912). Ein Beitrag zur Erklarung des Segelfluges, Zeitschrift für Flugtechnik und Motorluftschiffahrt 3, 269–72.
Biewener, A. A. (2003). Animal Locomotion, Oxford Animal Biology Series (Oxford, Oxford University Press).
Birch, J. M. and Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature (London) 412, 729–33.
Birch, J. M., Dickson, W. B., and Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers, Journal of Experimental Biology 207, 1063–72.
Bohorquez, F., Rankins, F., Baeder, J., and Pines, D. (2003). Hover performance of rotor blades at low Reynolds numbers for rotary wing micro air vehicles. An experimental and computational fluid dynamics study, AIAA Paper 2003–3930.
Brackenbury, J. (1990). Wing movements in the bush cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping, Journal of Zoology 220, 593–602.
Bradley, R. G., Smith, C. W., and Wary, W. O. (1974). An experimental investigation of leading-edge vortex augmentation by blowing, NASA CR-132415.
Bratt, J. B. (1953). Flow patterns in the wake of an oscillating airfoil, Aeronautical Research Council Technical Report R and M 2773.
Brodsky, A. K. (1994). The Evolution of Insect Flight (New York, Oxford University Press).
Brown, W. C. (1939). Boston low-speed wind tunnel, and Wind tunnel: Characteristics of indoor airfoils, Journal of International Aeromodeling, 3–7.
Buckholz, R. H. (1986). The functional role of wing corrugation in living system, Journal of Fluids Engineering 108, 93–7.
Campbell, J. F. (1976). Augmentation of vortex lift by spanwise blowing, Journal of Aircraft 13, 727–32.
Carmichael, B. H. (1981). Low Reynolds number airfoil survey, NASA CR 1165803.
Cebeci, T. (1988). Essential ingredients of a method for low Reynolds-number airfoils, AIAA Journal 27, 1680–8.
Chai, P. and Dudley, R. (1996). Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures, Journal of Experimental Biology 199, 2285–95.
Chai, P. and Millard, D. (1997). Flight and size constraints: Hovering performance of large hummingbirds under maximal loading, Journal of Experimental Biology 200, 2757–63.
Chambers, L. L. G. (1966). A variational formulation of the Thwaites sail equation, Quarterly Journal of Mechanics and Applied Mathematics 19, 221–31.
Chasman, D. and Chakravarthy, S. (2001). Computational and experimental studies of asymmetric pitch/plunge flapping – The secret of biological flyers, AIAA Paper 2001-0859.
Chen, K. K. and Thyson, N. A. (1971). Extension of Emmons’ spot theory to flows on blunt bodies, AIAA Journal 9, 821–5.
Childress, S. (1981). Mechanics of Swimming and Flying (New York, Cambridge University Press).
Cloupeau, M. (1979). Direct measurements of instantaneous lift in desert locust; Comparison with Jensen's experiments on detached wings, Journal of Experimental Biology 80, 1–15.
Collins, P. Q. and Graham, J. M. R. (1994). Human flapping – Wing flight under reduced gravity, Aeronautical Journal 98, 177–84.
Combes, S. A. and Daniel, T. L. (2003). Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmothManduca sexta, Journal of Experimental Biology 206, 2999–3006.
Cooter, R. J. and Baker, P. S. (1977). Weis-Fogh clap and fling mechanism in locusta, Nature (London) 269, 53–4.
Cox, J. (1973). The revolutionary Kasper wing, Soaring, December, 20.
Crabtree, L. F. (1957). Effect of leading edge separation on thin wings in two-dimensional incompressible flow, Journal of Aeronautical Sciences 24, 597–604.
Cummings, R. M., Morton, S. A., Siegel, S. G., and Bosscher, S. (2003). Numerical prediction and wind tunnel experiment for pitching unmanned combat air vehicles, AIAA Paper 2003-0417.
Davis, R. L., Carter, J. E., and Reshotko, E. (1987). Analysis of transitional separation bubbles on infinite swept wings, AIAA Journal 25, 421–8.
Davis, W. R., Kosicki, B. B., Boroson, D. M., and Kostishack, D. F. (1996). Micro air vehicles for optical surveillance, Lincoln Laboratory Journal 9, 197–214.
DeLaurier, J. D. (1993). An aerodynamic model for flapping wing flight, Aeronautical Journal 97, 125–130.
Matteis, G. and Socio, L. (1986). Nonlinear aerodynamics of a two-dimensional membrane airfoil with separation, Journal of Aircraft 23, 831–6.
Devin, S. I., Zavyalov, V. M., and Korovich, B. K. (1972). On the question of unsteady aerodynamic forces acting upon a wing of finite aspect ratio at large amplitudes of oscillation and large Strouhal numbers, Voprosy Sudostroeniya Ser.: Proektirovanie Sudov, Vyp. 1, 34–41.
Vries, O. (1983). On the theory of the horizontal-axis wind turbine, Annual Review of Fluid Mechanics 15, 77–96.
Dhawan, S. (1991). Bird flight, Sadhana – Academy Proceedings in Engineering Sciences 16, 275–352.
Dial, K. P. (1994). An inside look at how birds fly: Experimental studies of the internal and external processes controlling flight, 1994 Report to the Aerospace Profession, 38th Symposium Proceedings, Beverly Hills, CA.
Dick, E. and Steelant, J. (1996). Modeling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation, International Journal for Numerical Methods in Fluids 23, 193–220.
Dick, E. and Steelant, J. (1997). Coupled solution of the steady compressible Navier–Stokes equations and the k–∊ turbulence equations with a multigrid method, Applied Numerical Mathematics 23, 49–61.
Dickinson, M. H. and Gotz, K. G. (1993). Unsteady aerodynamic perfornamce of model wings at low Reynolds numbers, Journal of Experimental Biology 174, 45–64.
Dickinson, M. H., Lehmann, F.-O., and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954–60.
Ding, H., Yang, B., Lou, M., and Fang, H. (2003). New numerical method for two-dimensional partially wrinkled membranes, AIAA Journal 41, 125–32.
Dong, H., Mittal, R., and Najjar, F. M. (2006). Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils, Journal of Fluid Mechanics 566, 309–43.
Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Aerodynamics (Notre Dame, University of Notre Dame Press), pp. 1–12.
Dudley, R. (2000). The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton, NJ, Princeton University Press).
Dudley, R. and Ellington, C. P. (1990a). Mechanics of forward flight in bumblebees. Ⅰ. Kinematics and morphology, Journal of Experimental Biology 148, 19–52.
Dudley, R. and Ellington, C. P. (1990b). Mechanics of forward flight in bumblebees. Ⅱ. Quasi-steady lift and power requirements, Journal of Experimental Biology 148, 53–88.
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. Ⅰ. The quasi-steady analysis, Philosophical Transactions of the Royal Society of London. Series B 305, 1–15.
Ellington, C. P. (1984b). Morphological parameters, Ⅱ. The aerodynamics of hovering insect flight, Philosophical Transactions of the Royal Society of London. Series B 305, 17–40.
Ellington, C. P. (1984c). The aerodynamics of insect flight. Ⅲ. Kinematics, Philosophical Transactions of the Royal Society of London. Series B 305, 41–78.
Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. Ⅳ. Aerodynamic mechanisms, Philosophical Transactions of the Royal Society of London. Series B 305, 79–113.
Ellington, C. P. (1984e). The aerodynamics of hovering insect flight. V. A Vortex theory, Philosophical Transactions of the Royal Society of London. Series B 305, 115–44.
Ellington, C. P. (1984f). The aerodynamics of hovering insect flight. Ⅵ. Lift and power requirements, Philosophical Transactions of the Royal Society of London. Series B 305, 145–181.
Ellington, C. P. (1995). Unsteady aerodynamics of insect flight, in Ellington, C. P. and Pedley, T. J. (Eds.), Biological Fluid Dynamics, Society for Experimental Biology Symposium, Vol. 49 (Cambridge, UK, The Company of Biologists), pp. 109–29.
Ellington, C. P., Berg, C., Willmott, A. P., and Thomas, A. L. R. (1996). Leading-edge vortices in insect flight, Nature (London) 384, 626–30.
Ennos, A. R. (1989). The kinematics and aerodynamics of the free flight of some Diptera, Journal of Experimental Biology 142, 49–85.
Erickson, G. E. and Campbell, J. F. (1975). Flow visualization of leading-edge vortex enhancement by spanwise blowing, NASA TM X-72702.
Escudier, M. (1988). Vortex breakdown: Observations and explanations, Progress in Aerospace Sciences 25, 189–229.
Freymuth, P. (1988). Propulsive vortical signatures of plunging and pitching airfoils, AIAA Paper 88–323.
Freymuth, P. (1990). Thrust generation by an airfoil in hover modes, Experiments in Fluids 9, 17–24.
Friedmann, P. P. (1999). Renaissance of aeroelasticity and its future, Journal of Aircraft 36, 105–21.
Fry, S. N., Sayaman, R., and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila, Science 300, 495–8.
Fung, Y. C. (1969). An Introduction to the Theory of Aeroelasticity (New York, Dover).
Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Swartz, S., and Breuer, K. (2006). The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics, AIAA Paper 2006–2866.
Garcia, H., Abdulrahim, M., and Lind, R. (2003). Roll control for a micro air vehicle using active wing morphing, AIAA Paper 2003–5347.
Gleyzes, C., Cousteix, J., and Bonnet, J. L. (1985). Theoretical and experimental study of low Reynolds number transitional separation bubbles, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics (Notre Dame, IN, University of Notre Dame Press), pp. 137–52.
Goldspink, G. (1977). Energy cost of locomotion, in Alexander, R. M. and Chapman, G. C. (Eds.), Mechanics and Energetics of Animal Locomotion (London, Chapman and Hall).
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S., and Barrett, D. (1994). Active vorticity control in a shear flow using a flapping foil, Journal of Fluid Mechanics 274 (Sep.), 1–21.
Goslow, G. E. Jr., Dial, K. P., and Jenkins, F. A. Jr. (1990). Bird flight: Insights and complications, BioScience 40, 108–15.
Gotz, K. G. (1987). Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster, Journal of Experimental Biology 128, 35–46.
Green, A. E. and Adkins, J. E. (1960). Large Elastic Deformations (Oxford, Clarendon).
Greenewalt, C. H. (1975). The flight of birds: The significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure, Transactions of the American Philosophical Society 65 (4), 1–67.
Greenhalgh, S., Curtiss, H. C., and Smith, B. (1984). Aerodynamic properties of a two-dimensional inextensible flexible airfoil, AIAA Journal 22, 865–70.
Grodnitsky, D. L. (1999). Form and function of insect wings: The evolution of biological structures (Baltimore, MD, Johns Hopkins University Press).
Hall, M. G. (1972). Vortex breakdown, Annual Review of Fluid Mechanics 4, 195–218.
Ham, N. D. (1968). Aerodynamic loading on a two-dimensional airfoil during dynamic stall, AIAA Journal 6, 1927–34.
Harper, P. W. and Flanigan, R. E. (1950). The effect of rate of change of angle of attack on the maximum lift of a small model, NACA TN-2061.
Harris, F. D. and Pruyn, R. R. (1968). Blade stall–Half fact, half fiction, Journal of the American Helicopter Society 13(2), 27–48.
He, X., Senocak, I., Shyy, W., Thakur, S. S., and Gangadharan, S. (2000). Evaluation of laminar-turbulent transition and equilibrium near wall turbulence models, Numerical Heat Transfer, Part A 37, 101–12.
Heathcote, S., Martin, D., and Gursul, I. (2004). Flexible flapping airfoil propulsion at zero freestream velocity, AIAA Journal 42, 2196–204.
Herbert, T. (1997). Parabolized stability equations, Annual Review of Fluid Mechanics 29, 245–83.
Hill, A. V. (1950). The dimensions of animals and their muscular dynamics, Science Progress 38, 209–30.
Hillier, R. and Cherry, N. J. (1981). The effects of stream turbulence on separation bubbles, Journal of Wind Engineering and Industrial Aerodynamics 8, 49–58.
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C., and Ho, C.-M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers, Progress in Aerospace Sciences 39, 635–81.
Hoff, W. (1919). Der Flug der Insekten, Naturwissenschaften 7, 159.
Holloway, D. S., Walters, D. K., and Leylek, J. H. (2004). Prediction of unsteady, separated boundary layer over a blunt body for laminar, turbulent, and transitional flow, International Journal for Numerical Methods in Fluids 45, 1291–1315.
Houghton, E. L. and Carpenter, P. W. (2003). Aerodynamics for engineering students (Burlington, MA, Butterworth-Heinemann).
Hsiao, F.-B., Liu, C.-F., and Tang, Z. (1989). Aerodynamic performance and flow structure studies of a low Reynolds number airfoil, AIAA Journal 27, 129–37.
Huang, R. F., Shy, W. W., Lin, S. W., and Hsiao, F.-B. (1996). Influence of surface flow on aerodynamic loads of a cantilever wing, AIAA Journal 34, 527–32.
Hurley, D. G. (1959). The use of boundary-layer control to establish free stream-line flows, Advances in Aeronautical Science 2, 662–708.
Ifju, P. G., Jenkins, A. D., Ettingers, S., Lian, Y., and Shyy, W. (2002). Flexible-wing-based micro air vehicles, AIAA Paper 2002-0705.
Isogai, K., Fujishiro, S., Saitoh, T., Yamamoto, M., Yamasaki, M., and Matsubara, M. (2004). Unsteady three-dimensional viscous flow simulation of a dragonfly hovering, AIAA Journal 42, 2053–2059.
Jackson, P. (2001). Jane's All the World's Aircraft, (Alexandria, VA, Jane's Information Group).
Jackson, P. S. (1983). A simple model for elastic two-dimensional sails, AIAA Journal 21, 153–5.
Jackson, P. S. and Christie, G. W. (1987). Numerical analysis of three-dimensional elastic membrane wings, AIAA Journal 25, 676–82.
Jenkins, C. H. (1996). Nonlinear dynamic response of membranes: State of the art–update, Applied Mechanics Reviews 49, S41-S48.
Jenkins, C. H. and Leonard, J. W. (1991). Nonlinear dynamic response of membranes: State of the art, Applied Mechanics Reviews 44, 319–28.
Jones, B. M. (1938). Stalling, Journal of the Royal Aeronautical Society 38, 747–70.
Jones, K. D., Dohring, C. M., and Platzer, F. M. (1998). Experimental and computational investigation of the Knoller–Betz effect, AIAA Journal 36, 1240–6.
Jones, K. D., Lund, T. C., and Platzer, F. M. (2001). Experimental and computational investigation of flapping-wing propulsion for micro air vehicles, in Mueller, T. J. (Ed.), Fixed and Flapping Wings Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 307–36.
Jones, K. D. and Platzer, F. M. (2006). Bio-inspired design of flapping-wing micro air vehicles – An engineer's perspective, AIAA Paper 2006-0037.
Jones, K. D. and Platzer, M. F. (1999). An experimental and numerical investigation of flapping-wing propulsion, AIAA Paper 1999-0995.
Jones, K. D. and Platzer, M. F. (2003). Experimental investigation of the aerodynamic characteristics of flapping-wing micro air vehicles, AIAA Paper 2003-0418.
Jones, R. T. (1990). Wing Theory (Princeton, NJ, Princeton University Press).
Kasper, W. (1979). The Kasper Wing, Meheen, H. J. (Ed.), (Denver, CO, Meheen Engineering).
Katz, J. (1979). Low-Speed Aerodynamics: From Wing Theory to Panel Methods (San Francisco, CA, McGraw-Hill).
Katz, J. and Plotkin, A. (2002). Low-Speed Aerodynamics (Cambridge, UK, Cambridge University Press).
Katzmayr, R. (1922). Effect of periodic changes of angle of attack on behavior of airfoils, NACA TM-147.
Kawamura, Y., Souda, S., and Ellington, C. P. (2006). Quasi-hovering flight of a flapping micro air vehicle with large angle of attack, presented at The Third International Symposium on Aero Aqua Bio-Mechanisms, Okinawa Convention Center, Ginowan, Okinawa, Japan.
Kesel, A. B. (1998). Biologisches Vorbild Insektenflügel Mehrkriterienoptimierung ultraleichter Tragflächen, in Nachtigall, W. and Wisser, A. (Eds.), Biona-Report, Vol. 12 (Stuttgart/New York, Fischer), pp. 107–17.
Kesel, A. B. (2000). Aerodynamic characteristics of dragonfly wing sections compared with technical airfoils, Journal of Experimental Biology 203, 3125–35.
Kirkpatrick, S. J. (1994). Scale effects on the stresses and safety factors in the wing bones of birds and bats, Journal of Experimental Biology 190, 195–215.
Kiya, M. and Sasaki, K. (1983). Free-stream turbulence effects on a separation bubble, Journal of Wind Engineering and Industrial Aerodynamics 14(1–3), 375–86.
Knoller, R. (1909). Die Gesetze des Luftwiderstandes, Flug-und Motortechnik (Wein) 3(21), 1–7.
Koochesfahani, M. M. (1989). Vortical patterns in the wake of an oscillating airfoil, AIAA Journal 27, 1200–5.
Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflügeln bei plötzlicher Anstellwinkelvergrösserung (Böeneffect), Zeitschrift für Flugtechnik und Motorluftschiffahrt 23(7), 185–9.
Kruppa, E. W. (1977). A wind tunnel investigation of the Kasper vortex concept, AIAA Paper 77-310.
Lai, C. S. J. and Platzer, F. M. (1999). Jet characteristics of a plunging airfoil, AIAA Journal 37, 1529–37.
Lai, C. S. J. and Platzer, F. M. (2001). Characteristics of a plunging airfoil at zero freestream velocity, AIAA Journal 39, 531–4.
LaRoche, U. and Palffy, S. (1996). Wing grid, a novel device for reduction of induced drag on wings, presented at the International Council of Aeronautical Sciences (ICAS) Conference, Sorrento, Italy.
Lehmann, F.-O. (2004). The mechanisms of lift enhancement in insect flight, Naturwissenschaften 91(3), 101–22.
Lehmann, F.-O. and Dickinson, M. H. (1998). The control of wing kinematics and flight forces in fruit flies (Drosophila spp.), Journal of Experimental Biology 201, 385–401.
Lehmann, F.-O., Sane, S. P., and Dickinson, M. H. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings, Journal of Experimental Biology 208, 3075–92.
Leibovich, S. (1978). The structure of vortex breakdown, Annual Review of Fluid Mechanics 10, 221–46.
Lesieur, M. and Metais, O. (1996). New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics 28, 45–82.
Lian, Y. (2003). Membrane and Adaptively-Shaped Wings for Micro Air Vehicles, Ph.D. dissertation, Mechanical and Aerospace Engineering Department (Gainesville, FL, University of Florida).
Lian, Y. and Shyy, W. (2003). Three-dimensional fluid–structure interactions of a membrane wing for micro air vehicle applications, AIAA Paper 2003-1726.
Lian, Y. and Shyy, W. (2005). Numerical simulations of membrane wing aerodynamics for micro air vehicle applications, Journal of Aircraft 42, 865–73.
Lian, Y. and Shyy, W. (2006). Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil, AIAA Paper 2006-3051, also AIAA Journal 45, (2007) 1501–1513.
Lian, Y., Shyy, W., Ifju, P., and Verron, E. (2003a). A membrane wing model for micro air vehicles, AIAA Journal 41, 2492–4.
Lian, Y., Shyy, W., Viieru, D., and Zhang, B. N. (2003b). Membrane wing aerodynamics for micro air vehicles, Progress in Aerospace Sciences 39, 425–65.
Liebeck, R. H. (1992). Laminar separation bubbles and airfoil design at low Reynolds numbers, AIAA Paper 1992-2735.
Lighthill, M. J. (1969). Hydrodynamics of Aquatic Animal Propulsion (Philadelphia, PA, Society for Industry and Applied Mathematics).
Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation, Journal of Fluid Mechanics 60, 1–17.
Lighthill, M. J. (1977). Introduction to the scaling of aerial locomotion, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (New York, Academic), pp. 365–404.
Lissaman, P. B. S. (1983). Low Reynolds number airfoils, Annual Review of Fluid Mechanics 15, 223–39.
Liu, H. (2005). Simulation-based biological fluid dynamics in animal locomotion, Applied Mechanics Reviews 58, 269–282.
Liu, H., Ellington, C. P., Kawachi, K., Berg, C., and Willmott, A. P. (1998). A computational fluid dynamics study of hawkmoth hovering, Journal of Experimental Biology 201, 461–77.
Liu, H. and Kawachi, K. (1998). A numerical study of insect flight, Journal of Computational Physics 146, 124–56.
Liu, T. (2006). Comparative scaling of flapping- and fixed-wing flyers, AIAA Journal 44, 24–33.
Livne, E. (2003). Future of airplane aeroelasticity, Journal of Aircraft 40, 1066–92.
Mack, L. M. (1977). Transition prediction and linear stability theory, in Laminar-Turbulent Transition, AGARD CP 224, pp. 1/1–22.
Maddock, L., Bone, Q., and Rayner, J. M. V. (1994). Mechanics and Physiology of Animal Swimming (New York, Cambridge University Press).
Malik, M. R. (1982). COSAL – A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers, NASA CR-165925.
Marden, J. (1987). Maximum lift production during takeoff in flying animals, Journal of Experimental Biology 130, 235–58.
Mary, I. and Sagaut, P. (2002). Large eddy simulation of flow around an airfoil near stall, AIAA Journal 40, 1139–45.
Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling,’Journal of Fluid Mechanics 93, 47–63.
Mayle, R. E. (1991). The role of laminar-turbulent transition in gas turbine engine, Journal of Turbomachinery 113, 509–37.
McCroskey, W. J., Carr, L. W., and McAlister, K. W. (1976). Dynamic stall experiments on oscillating airfoils, AIAA Journal 14, 57–63.
McCroskey, W. J. and Fisher, R. K. (1972). Detailed aerodynamic measurements on a model rotor in the blade stall regime, Journal of the American Helicopter Society 17, 20–30.
McCroskey, W. J., McAlister, K. W., Carr, L. W., and Pucci, S. L. (1982). An experimental study of dynamic stall on advanced airfoil section, NASA TM-84245.
McMasters, J. H. and Henderson, M. J. (1980). Low speed single element airfoil synthesis, Technical Soaring 6(2), 1–21.
McMichael, J. M. and Francis, M. S. (1997). Micro air vehicles – Toward a new dimension in flight, available at http://euler.aero.iitb.ac.in/docs/MAV/www.darpa.mil/tto/MAV/mav_auvsi.html.
Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research, Annual Review of Fluid Mechanics 30, 539–578.
Mooney, M. (1940). A theory of large elastic deformation, Journal of Applied Physics 11, 582–592.
Mueller, T. J. (Ed.), (2001). Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA).
Mueller, T. J. and DeLaurier, J. D. (2003). Aerodynamics of small vehicles, Annual Review of Fluid Mechanics 35, 89–111.
Mueller, T. J., Pohlen, L. J., Conigliaro, P. E., and Jansen, B. J. J. (1983). The influence of free-stream disturbances on low Reynolds number airfoil experiments, Experiments in Fluids 1, 3–14.
Murai, H. and Maruyama, S. (1980). Theoretical investigation of the aerodynamics of double membrane sailwing airfoil sections, Journal of Aircraft 17, 294–9.
Murata, S. and Tanaka, S. (1989). Aerodynamic characteristics of a two-dimensional porous sail, Journal of Fluid Mechanics 206, 463–75.
Newman, B. G. (1987). Aerodynamic theory for membranes and sails, Progress in Aerospace Sciences 24, 1–27.
Newman, B. G. and Low, H. T. (1984). Two-dimensional impervious sails: Experimental results compared with theory, Journal of Fluid Mechanics 144, 445–62.
Newman, B. G., Savage, S. B., and Schouella, D. (1977). Model test on a wing section of a dragonfly, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (London, Academic), pp. 445–77.
Nielsen, J. N. (1963). Theory of flexible aerodynamic surfaces, Journal of Applied Mechanics 30, 435–42.
Norberg, U. M. (1975). Hovering flight of the dragonfly Aeschna juncea L., in Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.), Swimming and Flying in Nature, Vol. 2 (New York, Plenum), pp. 763–81.
Norberg, U. M. (1976). Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus Auritus, Journal of Experimental Biology 65, 179–212.
Norberg, U. M. (1990). Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution (Berlin, Springer-Verlag).
Obremski, H. J. and Fejer, A. A. (1967). Transition in oscillating boundary layer flow, Journal of Fluid Mechanics 29, 93–111.
Obremski, H. J. and Morkovin, M. V. (1969). Application of a quasi-steady stability model to periodic boundary layer flows, AIAA Journal 7, 1298–1301.
Oden, J. T. and Sato, T. (1967). Finite strains and displacements of elastic membrane by the finite element method, International Journal for Solids and Structures 3, 471–88.
Okamoto, M., Yasuda, K., and Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly, Journal of Experimental Biology 199, 281–94.
Ol, M., McAuliffe, B. R., Hanff, E. S., Scholz, U., and Kaehler, C. (2005). Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities, AIAA Paper 2005-5149.
O'Meara, M. M. and Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds numbers, AIAA Journal 25, 1033–41.
Osborne, M. F. M. (1951). Aerodynamics of flapping flight with application to insects, Journal of Experimental Biology 28, 221–45.
Pedley, T. J. (Ed.) (1977). Scale Effects in Animal Locomotion (New York, Academic).
Pendersen, C. B. and Zbikowski, R. (2006). An indicial-Polhamus aerodynamic model of insect-like flapping wings in hover, in Liebe, R. (Ed.), Flow Phenomena in Nature, Vol. 2 (Southampton, UK, WIT Press), pp. 606–65.
Pennycuick, C. J. (1969). The mechanics of bird migration, Ibis 111, 525–56.
Pennycuick, C. J. (1975). Mechanics of Flight, Avian Biology, Farner, D. S. and King, J. R. (Eds.), Vol. 5 (London, Academic).
Pennycuick, C. J. (1986). Mechanical constraints on the evolution of flight, in Padian, K. (Ed.), The Origin of Birds And the Evolution of Flight, Memoirs of the California Academy of Sciences, Vol. 8 (San Francisco, CA, California Academy of Sciences), pp. 83–98.
Pennycuick, C. J. (1989). Bird Flight Performance: A Practical Calculation Manual (Oxford, UK/New York, Oxford University Press).
Pennycuick, C. J. (1990). Predicting wingbeat frequency and wavelength of birds, Journal of Experimental Biology 150, 171–85.
Pennycuick, C. J. (1992). Newton Rules Biology: A Physical Approach to Biological Problems (New York, Oxford University Press).
Pennycuick, C. J. (1996). Wingbeat frequency of birds in steady cruising flight: New data and improved predictions, Journal of Experimental Biology 199, 1613–18.
Pennycuick, C. J., Klaassen, M., Kvist, A., and Lindstrom, A. (1996). Wingbeat frequency and the body drag anomaly: Wind-tunnel observations on a thrush nightingale (Luscinia Luscinia) and a teal (Anas Crecca), Journal of Experimental Biology 199, 2757–65.
Polonskiy, Y. E. (1948). Vortex streets, their application to the theory of flapping wing, Dissertatsiyay k.t.n, Moscow, VVA KA im. N. E. Zhukovskogo.
Polonskiy, Y. E. (1950). Some questions on the flapping wing, Inzhenerniy Sbornik 8, 49–60.
Praisner, T. J. and Clark, J. P. (2004). Predicting transition in turbomachinery, Part I-A, Review and new model development, ASME Paper GT2004-54108.
Prandtl, L. and Tietjens, O. G. (1957). Fundamentals of Hydro and Aeromechanics (New York, Dover).
Radespiel, R., Graage, K., and Brodersen, O. (1991). Transition predictions using Reynolds-averaged Navier–Stokes and linear stability analysis methods, AIAA Paper 91-1641.
Radespiel, R., Windte, J., and Scholz, U. (2006). Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles, AIAA Paper 2006-501.
Ramamurti, R. and Sandberg, W. (2001). Simulation of flow about flapping airfoils using finite element incompressible flow solver, AIAA Journal 39, 253–260.
Raney, D. L. and Slominski, E. C. (2004). Mechanization and control concepts for biologically inspired micro air vehicles, Journal of Aircraft 41, 1257–65.
Rayner, J. M. V. (1979a). A new approach to animal flight mechanics, Journal of Experimental Biology 80, 17–54.
Rayner, J. M. V. (1979b). A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal, Journal of Fluid Mechanics 91, 697–730.
Rayner, J. M. V. (1979c). A vortex theory of animal flight. Part 2. The forward flight of birds, Journal of Fluid Mechanics 91, 731–63.
Rayner, J. M. V. (1988). Form and function in avian flight, in Johnston, R. F. (Ed.), Current Ornithology, Vol. 5 (New York, Plenum), pp. 1–66.
Roberts, S. K. and Yaras, M. I. (2005). Effects of surface roughness geometry on separation bubble transition, ASME Paper GT2005-68664.
Roberts, W. B. (1980). Calculation of laminar separation bubbles and their effect on airfoil performance, AIAA Journal 18, 25–31.
Rosen, M. (1959). Water flow about a swimming fish, U.S. Navy Ordnance Test Station, NAVWEPS Technical Report No. 2298.
Rozhdestvensky, K. V. and Ryzhov, V. A. (2003). Aerohydrodynamics of flapping-wing propulsors, Progress in Aerospace Sciences 39, 585–633.
Sane, S. P. and Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production, Journal of Experimental Biology 204, 2607–26.
Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, Journal of Experimental Biology 205, 1087–96.
Satyanarayana, B. and Davis, S. (1978). Experimental studies of unsteady trailing-edge conditions, AIAA Journal 16, 125–9.
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? (New York, Cambridge University Press).
Schmitz, F. W. (1942). Aerodynamik des Flugmodells (Berlin, Verlag).
Schrauf, G. (1998). A compressible stability code. User's Guide and Tutorial, Daimler Benz Aerospace Airbus GmbH, Technical Report EF 040/98.
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1995). Summary of Low-Speed Airfoil Data, Vol. 1 (Virginia Beach, VA, SoarTech Publications).
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1996a). Experiments on airfoils at low Reynolds numbers, AIAA Paper 1996-0062.
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. N., and Guglielmo, J. J. (1996b). Summary of Low-Speed Airfoil Data, Vol. 2 (Virginia Beach, VA, SoarTech Publications).
Selig, M. S. and Maughmer, M. D. (1992). Multipoint inverse airfoil design method based on conformal mapping, AIAA Journal 30, 1162–1170.
Shevell, R. S. (1983). Fundamentals of Flight (Englewood Cliffs, NJ, Prentice-Hall).
Shipman, P. (1998). Taking Wing: Archaeopteryx and the Evolution of Bird Flight (New York, Simon and Schuster).
Shyy, W., Berg, M., and Ljungqvist, D. (1999a). Flapping and flexible wings for biological and micro vehicles, Progress in Aerospace Sciences 35, 455–506.
Shyy, W., Jenkins, D. A., and Smith, R. W. (1997). Study of adaptive shape airfoils at low Reynolds number in oscillatory flow, AIAA Journal 35, 1545–48.
Shyy, W., Kleverbring, F., Nilsson, M., Sloan, J., Carroll, B., and Fuentes, C. (1999b). Rigid and flexible low Reynolds number airfoils, Journal of Aircraft 36, 523–9.
Shyy, W. and Liu, H. (2007). Flapping wings and aerodynamic lift: the role of leading-edge vortices, to appear in AIAA Journal.
Shyy, W. and Smith, R. (1997). A study of flexible airfoil aerodynamics with application to micro aerial vehicles, AIAA Paper 97-1933.
Shyy, W., Udaykumar, H. S., Madhukar, M. R., and Richard, W. S. (1996). Computational Fluid Dynamics with Moving Boundaries, Series in Computational and Physical Processes in Mechanics and Thermal Sciences (Washington, D.C., Taylor and Francis).
Singh, B. and Chopra, I. (2006). Dynamics of insect-based flapping wings: Loads validation, AIAA Paper 2006-1663.
Singh, R. K., Chao, J., Popescu, M., Tai, C.-F., Mei, R., and Shyy, W. (2006). Multiphase/multidomain computations using continuum conservative and lattice Boltzmann methods, ASCE Journal of Aerospace Engineering 19, 288–95.
Singh, R. K. and Shyy, W. (2006). Three-dimensional adaptive grid computation with conservative, marker-based tracking for interfacial fluid dynamics, AIAA Paper 2006-1523.
Smith, A. M. O. and Gamberoni, N. (1956). Transition, pressure gradient, and stability theory, Douglas Aircraft Co., Report No. ES 26388.
Smith, M. J. C. (1996). Simulating moth wing aerodynamics: Towards the development of flapping-wing technology, AIAA Journal 34, 1348–55.
Sneyd, A. D. (1984). Aerodynamic coefficients and longitudinal stability of sail airfoils, Journal of Fluid Mechanics 149, 127–46.
Spedding, G. R. (1992). The aerodynamics of flight, in Alexander, R. M. (Ed.), Mechanics of Animal Locomotion, Advances in Comparative and Environmental Physiology, Vol. 11 (Berlin, Springer-Verlag), pp. 52–111.
Srygley, R. B. and Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies, Nature (London) 420, 660–4.
Stanford, B., Viieru, D., Albertani, R., Shyy, W., and Ifju, P. (2006). A numerical and experimental investigation of flexible micro air vehicle wing deformation, AIAA Paper 2006-0440.
Stock, H. W. and Haase, W. (1999). A feasibility study of eN transition prediction in Navier–Stokes methods for airfoils, AIAA Journal 37, 1187–96.
Storer, J. H. (1948). The Flight of Birds, Cranbrook Institute Bulletin, 28 (Bloomfield Hills, MI, Cranbrook Press).
Streitlien, K. and Triantafyllou, G. S. (1998). On thrust estimates for flapping foils, Journal of Fluids and Structures 12, 47–55.
Sugimoto, T. and Sato, J. (1988). Aerodynamic characteristics of two-dimensional membrane airfoils, Journal of the Japan Society for Aeronautical and Space Sciences 36, 36–43.
Sun, M. and Tang, J. (2002a). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, Journal of Experimental Biology 205, 55–70.
Sun, M. and Tang, J. (2002b). Lift and power requirements of hovering flight in Drosophila virilis, Journal of Experimental Biology 205, 2413–27.
Sunada, S. and Ellington, C. P. (2000). Approximate added-mass method for estimationg induced power for flapping fight, AIAA Journal 38, 1313–21.
Sunada, S., Kawachi, K., Matsumoto, A., and Sakaguchi, A. (2001). Unsteady forces on a two-dimensional wing in plunging and pitching motions, AIAA Journal 39, 1230–9.
Sunada, S., Kawachi, K., Watanabe, I., and Azuma, A. (1993). Fundamental analysis of three-dimensional ‘near fling,’Journal of Experimental Biology 183, 217–48.
Sunada, S., Yasuda, T., Yasuda, K., and Kawachi, K. (2002). Comparison of wing characteristics at an ultralow Reynolds number, Journal of Aircraft 39, 331–8.
Suzen, Y. B. and Huang, P. G. (2000). Modeling of flow transition using an intermittency transport equation, Journal of Fluids Engineering 122, 273–84.
Swartz, S. M. (1997). Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energies of powered flight, Journal of Morphology 234, 277–94.
Swartz, S. M., Bennett, M. B., and Carrier, D. R. (1992). Wing bone stresses in free flying bats and the evolution of skeletal design for flight, Nature (London), 359, 726–9.
Taneda, S. (1976). Visual study of unsteady separated flows around bodies, Progress in Aerospace Sciences 17, 287–348.
Tang, J., Viieru, D., and Shyy, W. (2007). Effects of Reynolds number, reduced frequency and flapping kinematics on hovering aerodynamics, AIAA Paper 2007-0129.
Tang, J. and Zhu, K.-Q. (2004). Numerical and experimental study of flow structure of low-aspect-ratio wing, Journal of Aircraft 41, 1196–1201.
Tani, I. (1964). Low-speed flows involving bubble separations, in Kuchenmann, D. and Sterne, L. H. G. (Eds.), Progress in Aeronautical Sciences, Vol. 5 (New York, Pergamon), pp. 70–103.
Taylor, G. K., Nudds, R. L., and Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency, Nature (London) 425, 707–11.
Templin, R. J. (2000). The spectrum of animal flight: Insects to pterosaurs, Progress in Aerospace Sciences 36, 393–436.
Tennekes, H. (1996). The Simple Science of Flight (From Insects to Jumbo Jets) (Boston, MIT Press).
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, L. R., and Bomphrey, R. J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack, Journal of Experimental Biology 207, 4299–323.
Thwaites, B. (1961). The aerodynamic theory of sails. Part Ⅰ. Two-dimensional sails, Proceedings of the Royal Society of London. Series A 261, 402–22.
Tian, X., Iriarte, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., Sullivan, A., Song, A., Swartz, S., and Breuer, K. (2006). Direct measurements of the kinematics and dynamics of bat flight, AIAA Paper 2006-2865.
Tobalske, B. W. and Dial, K. P. (1996). Flight kinematics of black-billed magpies and pigeons over a wide range of speeds, Journal of Experimental Biology 199, 263–80.
Tobalske, B. W., Hedrick, T. L., Dial, K. P., and Biewener, A. A. (2003). Comparative power curves in bird flight, Nature (London) 421, 363–6.
Torres, G. E. and Mueller, T. J. (2001). Aerodynamic characteristics of low aspect ratio wings at low Reynolds numbers, in Mueller, T. J. (Ed.), Fixed and Flapping Wing Aerodynamics for Micro Air Vehicles, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 341–91.
Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming, Annual Review of Fluid Mechanics 32, 33–53.
Usherwood, J. R. and Ellington, C. P. (2002). The aerodynamics of revolving wings Ⅰ. Model hawkmoth wings, Journal of Experimental Biology 205, 1547–64.
Berg, C. and Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth, Philosophical Transactions of the Royal Society of London. Series B 352, 329–40.
Vanden-Broeck, J. M. (1982). Nonlinear two-dimensional sail theory, Physics of Fluids 25, 420–3.
Vanden-Broeck, J. M., and Keller, J. B. (1981). Shape of a sail in a flow, Physics of Fluids 24, 552–3.
Van Ingen, J. L. (1956). A suggested semi-empirical method for the calculation of the boundary layer transition region, Delft University of Technology, Dept. of Aerospace Engineering, Report No. VTH-74.
Van Ingen, J. L. (1995). Some introductory remarks on transition prediction methods based on linear stability theory, in Henkes, R. A. W. M. and Ingen, J. L. (Eds.), Transitional Boundary Layers in Aeronautics (Amsterdam, The Netherlands, Elsevier), pp. 209–24.
Verron, E., Marckmann, G., and Pesaux, B. (2001). Dynamic inflation of non-linear elastic and viscoelastic rubber-like membranes, International Journal for Numerical Methods in Engineering 50, 1233–51.
Vest, M. S. and Katz, J. (1996). Unsteady aerodynamics model of flapping wings, AIAA Journal 34, 1435–40.
Videler, J. J., Stamhuis, E. J., and Povel, G. D. E. (2004). Leading-edge vortex lifts swifts, Science 306, 1960–2.
Viieru, D., Albertani, R., Shyy, W., and Ifju, G. P. (2005). Effect of tip vortex on wing aerodynamics of micro air vehicles, Journal of Aircraft 42, 1530–6.
Viieru, D., Lian, Y., Shyy, W., and Ifju, G. P. (2003). Investigation of tip vortex on aerodynamic performance of a micro air vehicle, AIAA Paper 2003-3597.
Viieru, D., Tang, J., Lian, Y., Liu, H., and Shyy, W. (2006). Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles, AIAA Paper 2006-0503.
Voelz, K. (1950). Profil und Luftriebeines Segels, Zeitschrift für Angewandte Mathematik und Mechanik 30, 301–17.
Vogel, S. (1967). Flight in Drosophila. Ⅲ. Aerodynamic characteristics of fly wings and wing models, Journal of Experimental Biology 46, 431–43.
Vogel, S. (1996). Lift in Moving Fluids: The Physical Biology of Flow (Princeton, NJ, Princeton University Press).
Volino, R. J. and Bohl, D. G. (2004). Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions, ASME Paper GT2004-53360.
Von Karman, T. and Burgers, J. M. (1935). General aerodynamic theory – Perfect fluids, in Durand, W. (Ed.), Aerodynamic Theory, Vol. Ⅱ (Berlin, Springer).
Wakeling, J. M. and Ellington, C. P. (1997a). Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight, Journal of Experimental Biology 200, 557–82.
Wakeling, J. M. and Ellington, C. P. (1997b). Dragonfly flight. Ⅲ. Lift and power requirements, Journal of Experimental Biology 200, 583–600.
Walker, J. A. and Westneat, M. W. (2000). Mechanical performance of aquatic rowing and flying, Proceedings of the Royal Society of London. Series B 267, 1875–81.
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight, Journal of Fluid Mechanics 410, 323–41.
Wang, Z. J., Birch, J. M., and Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments, Journal of Experimental Biology 207, 449–60.
Ward-Smith, A. J. (1984). Biophysical Aerodynamics and the Natural Environment (New York, Wiley).
Warrick, D. R., Tobalske, B. W., and Powers, D. R. (2005). Aerodynamics of the hovering hummingbird, Nature (London) 435, 1094–7.
Waszak, R. M., Jenkins, N. L., and Ifju, P. (2001). Stability and control properties of an aeroelastic fixed wing micro aerial vehicle, AIAA Paper 2001-4005.
Wazzan, A. R., Gazley, J. C., and Smith, A. M. O. (1979). Tollmien–Schlichting waves and transition: Heated and adiabatic wedge flows with application to bodies of revolution, Progress in Aerospace Sciences 18, 351–92.
Wazzan, A. R., Okamura, T. T., and Smith, A. M. O. (1968). Spatial and temporal stability charts for the Falkner–Skan boundary layer profiles, Douglas Aircraft Co, DAC-67086.
Weis-Fogh, T. (1972). Energetics of hovering flight in hummingbirds and in drosophila, Journal of Experimental Biology 56, 79–104.
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, Journal of Experimental Biology 59, 169–230.
Weis-Fogh, T. and Jensen, M. (1956). Biology and physics of locust flight. Ⅰ. Basic principles in insect flight. A critical review, Philosophical Transactions of the Royal Society of London. Series B 239, 415–58.
Weiss, H. (1939). Wind tunnel: Effect of wing spar size, Journal of International Aeromodeling, pp. 5–7.
Westesson, R. A. and Clareus, U. (1974). Turbulent lift. Comments on some preliminary wind tunnel tests – Characteristics of vortex on wing surface from tangential blowing on upper surface, NASA-TT-F-15743, TP-74-51.
White, F. M. (1991). Viscous Fluid Flow (New York, McGraw-Hill).
Wilcox, C. D. (2000). Turbulence Modeling for computational fluid dynamics (La Canada, CA, DCW Industries).
Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model, AIAA Journal 32, 247–55.
Wilkin, P. J. and Williams, H. M. (1993). Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory, Physiological Zoology 66, 1015–44.
Willmott, A. P. and Ellington, C. P. (1997a). Measuring the angle of attack of beating insect wings: Robust three-dimensional reconstruction from two-dimensional images, Journal of Experimental Biology 200, 2693–2704.
Willmott, A. P. and Ellington, C. P. (1997b). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅰ. Kinematics of hovering and forward flight, Journal of Experimental Biology 200, 2705–22.
Willmott, A. P. and Ellington, C. P. (1997c). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅱ. Aerodynamic consequences of kinematic and morphological variation, Journal of Experimental Biology 200, 2723–45.
Wolfgang, M. J., Tolkoff, S. W., Techet, A. H., Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Hover, F. S., Grosenbaugh, M. A., and McGillis, W. R. (1998). Drag reduction and turbulence control in swimming fish-like bodies, Proceedings of the International Symposium on Seawater Drag Reduction (Newport, RI, Naval Undersea Warfare Center).
Wootton, R. J. and Newman, D. J. S. (1979). Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles, Nature (London) 280, 402–3.
Wu, J. Z., Vakili, A. D., and Wu, J. M. (1991). Review of the physics of enhancing vortex lift by unsteady excitation, Progress in Aerospace Sciences 28, 73–131.
Wu, T. Y.-T. (1971). Hydromechanics of swimming of fishes and cetaceans, in Yih, C.-S. (Ed.), Advances in Applied Mechanics, Vol. 11 (New York, Academic), pp. 1–63.
Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.) (1975). Swimming and Flying in Nature, Vols. 1 and 2 (New York, Plenum).
Ye, T., Shyy, W., and Chung, J. C. (2001). A fixed-grid, sharp-interface, method for bubble dynamics and phase change, Journal of Computational Physics 174, 781–815.
Young, A. D. and Horton, H. P. (1966). Some results of investigation of separation bubbles, AGARD Conference Proceedings, Vol. 4, Part 2 (London, UK, Technical Editing and Reproduction, Ltd.), pp. 785–811.
Yuan, W., Khalid, M., Windte, J., Scholz, U., and Radespiel, R. (2005). An investigation of low-Reynolds-number flows past airfoils, AIAA Paper 2005-4607.
Zanker, J. M. and Gotz, K. G. (1990). The wing beat of Drosophila Melanogaster. Ⅱ. Dynamics, Philosophical Transactions of the Royal Society of London. Series B 327, 19–44.
Zbikowski, R. (2002). On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles, Philosophical Transactions of the Royal Society of London. Series A 360, 273–90.
Zheng, X., Liu, C., Liu, F., and Yang, C. (1998). Turbulence transition simulation using the k-ω model, International Journal for Numerical Methods in Engineering 42, 907–26.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.