Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function

Abstract

Translation of the hepatitis C virus (HCV) polyprotein is initiated at an internal ribosome entry site (IRES) element in the 5′ untranslated region of HCV RNA. The HCV IRES element interacts directly with the 40S subunit, and biochemical experiments have implicated RNA elements near the AUG start codon as required for IRES–40S subunit complex formation. The data we present here show that two RNA stem loops, domains IIId and IIIe, are involved in IRES–40S subunit interaction. The structures of the two RNA domains were solved by NMR spectroscopy and reveal structural features that may explain their role in IRES function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structure of HCV domain IIIe stem loop.
Figure 3: Structure of HCV domain IIId stem loop.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. J. Virol. 66, 1476–1483 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, C., Sarnow, P. & Siddiqui, A. J. Virol. 67, 3338– 3344 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sachs, A.B., Sarnow, P. & Hentze, M.W. Cell 89, 831– 838 (1997).

    Article  CAS  Google Scholar 

  4. Pestova, T.V., Shatsky, I.N., Fletcher, S.P., Jackson, R.J. & Hellen, C.U. Genes Dev. 12, 67–83 (1998).

    Article  CAS  Google Scholar 

  5. Fukushi, S. et al. Biochem. Biophys. Res. Com. 199, 425 –432 (1994).

    Article  CAS  Google Scholar 

  6. Reynolds, J.E. et al. EMBO J. 14, 6010–6020 (1995).

    Article  CAS  Google Scholar 

  7. Rijnbrand, R. et al. FEBS Lett. 365, 115– 119 (1995).

    Article  CAS  Google Scholar 

  8. Honda, M. et al. Virology 222, 31–42 (1996).

    Article  CAS  Google Scholar 

  9. Wang, C., Sarnow, P. & Siddiqui, A. J. Virol. 68, 7301– 7307 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, C., Le, S.Y., Ali, N. & Siddiqui, A. RNA 1, 526–537 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Psaridi, L., Georgopoulou, U., Varaklioti, A. & Mavromara, P. FEBS Lett. 453, 49–53 ( 1999).

    Article  CAS  Google Scholar 

  12. Kieft, J.S. et al. J. Mol. Biol. 292, 513– 529 (1999).

    Article  CAS  Google Scholar 

  13. Dingley, A.J. & Grzesiek, S. J. Am. Chem. Soc. 120, 8293–8297 ( 1998).

    Article  CAS  Google Scholar 

  14. Heus, H.A. & Pardi, A. Science 253 , 191–194 (1991).

    Article  CAS  Google Scholar 

  15. Puglisi, E.V. & Puglisi, J.D. Nature Struct. Biol. 5, 1033–1036 ( 1998).

    Article  CAS  Google Scholar 

  16. Smith, D.B. et al. J. Gen. Virol. 76, 1749– 1761 (1995).

    Article  CAS  Google Scholar 

  17. Leontis, N.B. & Westhof, E. J. Mol. Biol. 283, 571–583 (1998).

    Article  CAS  Google Scholar 

  18. Dallas, A. & Moore, P.B. Structure 5, 1639–53 (1997).

    Article  CAS  Google Scholar 

  19. Correll, C.C., Freeborn, B., Moore, P.B. & Steitz, T.A. Cell 91, 705–712 ( 1997).

    Article  CAS  Google Scholar 

  20. Zhang, P. & Moore, P.B. Biochemistry 28, 4607–46015 (1989).

    Article  CAS  Google Scholar 

  21. Puglisi, J.D. & Wyatt, J.R. Methods Enzymol. 261, 323–350 (1995).

    Article  CAS  Google Scholar 

  22. Batey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D. & Williamson, J.R. Nucleic Acids Res. 20, 4515–4523 ( 1992).

    Article  CAS  Google Scholar 

  23. Marino, J.P. et al. J. Am. Chem. Soc. 116, 6472– 6473 (1994).

    Article  CAS  Google Scholar 

  24. Marino, J.P., Diener, J.L., Moore, P.B. & Griesinger, C. J. Am. Chem. Soc. 119, 7361–7366 (1997).

    Article  CAS  Google Scholar 

  25. Smallcombe, S.H. J. Am. Chem. Soc. 115, 4776–4785 (1993).

    Article  CAS  Google Scholar 

  26. Fourmy, D., Yoshizawa, S. & Puglisi, J.D. J. Mol. Biol. 277, 333– 345 (1998).

    Article  CAS  Google Scholar 

  27. Goddard, T.D. & Kneller, D. G. SPARKY 3. (University of California, San Francisco; 2000).

    Google Scholar 

  28. Brünger, A.T. X-PLOR Version 3.1: A system for x–ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  29. Blobel, G. & Sabatini, D. Proc. Natl. Acad. Sci. U. S. A. 68, 390–394 (1971).

    Article  CAS  Google Scholar 

  30. Moazed, D. & Noller, H.F. Cell 47 , 985–994 (1986).

    Article  CAS  Google Scholar 

  31. Peattie, D.A. Proc. Natl. Acad. Sci. U. S. A. 76, 1760– 1764 (1979).

    Article  CAS  Google Scholar 

  32. Stern, S., Moazed, D. & Noller, H.F. Methods Enzymol. 164, 481– 489 (1988).

    Article  CAS  Google Scholar 

  33. Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P. Proc. Natl. Acad. Sci. U. S. A. 96, 13118–13123 (1999).

    Article  CAS  Google Scholar 

  34. Brown, E.A., Zhang, H., Ping, L.H. & Lemon, S.M. Nucleic Acids Res. 20, 5041–5045 ( 1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Lau for preparation of labeled nucleotides. Supported by grants from the NIH, the Hutchinson Foundation and Eli Lilly, Inc., and a postdoctoral grant to P. J. L. from the Max Kade Foundation. The Stanford Magnetic Resonance Laboratory is supported by the Stanford University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Puglisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukavsky, P., Otto, G., Lancaster, A. et al. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Mol Biol 7, 1105–1110 (2000). https://doi.org/10.1038/81951

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing