News Release

DNA study shows stethoscopes loaded with bacteria, including staphylococcus

Findings suggest common cleaning methods leave bacteria behind

Peer-Reviewed Publication

Society for Healthcare Epidemiology of America

NEW YORK (December 12, 2018) -- Stethoscopes carried by health care practitioners are loaded with diverse bacteria, including some that can cause healthcare-associated infections, according to a study published today in Infection Control & Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America. The research also reviewed the effectiveness of cleaning methods, finding a standardized approach to be superior for removing bacteria compared with various approaches employed by health care practitioners.

"This study underscores the importance of adhering to rigorous infection control procedures, including fully adhering to CDC-recommended decontamination procedures between patients, or using single-patient-use stethoscopes kept in each patient's room," said Ronald Collman, MD, a professor of medicine, pulmonary, allergy and critical care at the University of Pennsylvania Perelman School of Medicine and senior author of the study.

Contamination on Single-Patient and Practitioner Stethoscopes

Researchers used molecular sequencing to develop a complete picture of bacteria on stethoscopes in use in an intensive care unit (ICU), including 20 traditional reusable stethoscopes being carried by physicians, nurses and respiratory therapists, 20 single-patient-use disposable stethoscopes used in patient rooms, and 10 unused single-use disposable stethoscopes as a control.

The analysis showed all 40 of the stethoscopes in use in the ICU were significantly contaminated with a rich and diverse community of bacteria, including those related to common healthcare-associated infections, though it could not determine if the stethoscopes ever made patients ill. Staphylococcus, the bacteria responsible for Staph infections, was found in abundance on all stethoscopes, with more than half of them having confirmed contamination with S. aureus. Other bacteria that can cause healthcare-associated infections, such as Pseudomonas and Acinetobacter, were also widely present on stethoscopes, though in small quantities.

Cleaning Methods Compared

To assess the impact of cleaning on contamination, researchers sampled 10 additional practitioner stethoscopes before and after cleaning for 60 seconds using a hydrogen peroxide wipe, and 20 more practitioner stethoscopes before and after cleaning by the practitioner according to their usual method, which included use of alcohol swabs, hydrogen peroxide wipes or bleach wipes used for different durations. All cleaning methods reduced the amount of bacteria but failed to consistently bring contamination to the level of clean, new stethoscopes. The standardized cleaning method reduced bacteria on half of the stethoscopes to the clean level, while only 10 percent, or two of the 20, reached that level when cleaned by the practitioner-preferred method, leaving stethoscopes as a potential vehicle for transmission of infection.

While molecular sequencing allowed researchers to identify all the types of bacteria and the quantity of bacteria, not just specific pathogens they set out to study, the DNA test could not distinguish live from dead bacteria, so it is not clear if the stethoscopes are responsible for the spread of disease-causing agents, Collman said. Additional research is required to determine if stethoscopes are responsible for transmitting infections.

Future research should also use similar molecular approaches to identify improved cleaning methods, study bacteria present on other "non-critical" medical devices used on multiple patients, as well as in the healthcare environment, and should also focus on antibiotic resistant bacteria, Collman said.

###

Vincent Knecht, John McGinniss, Hari Shankar, Erik Clarke, Brendan Kelly, Ize Imai, Ayannah Fitzgerald, Kyle Bittinger, Frederic Bushman, Ronald Collman. "Molecular Analysis of Bacterial Contamination on Stethoscopes in an Intensive Care Unit." Web (December 12, 2018).

About ICHE

Published through a partnership between the Society for Healthcare Epidemiology of America and Cambridge University Press, Infection Control & Hospital Epidemiology provides original, peer reviewed scientific articles for anyone involved with an infection control or epidemiology program in a hospital or healthcare facility. ICHE is ranked 19th out of 83 Infectious Disease Journals in the latest Web of Knowledge Journal Citation Reports from Thomson Reuters.

The Society for Healthcare Epidemiology of America (SHEA) is a professional society representing more than 2,000 physicians and other healthcare professionals around the world who possess expertise and passion for healthcare epidemiology, infection prevention, and antimicrobial stewardship. The society's work improves public health by establishing infection-prevention measures and supporting antibiotic stewardship among healthcare providers, hospitals, and health systems. This is accomplished by leading research studies, translating research into clinical practice, developing evidence-based policies, optimizing antibiotic stewardship, and advancing the field of healthcare epidemiology. SHEA and its members strive to improve patient outcomes and create a safer, healthier future for all. Visit SHEA online at http://www.shea-online.org, http://www.facebook.com/SHEApreventingHAIs and @SHEA_Epi.

About Cambridge Journals

Cambridge University Press publishes over 350 peer-reviewed academic journals across a wide spread of subject areas, in print and online. Many of these journals are leading academic publications in their fields and together form one of the most valuable and comprehensive bodies of research available today.

For further information about Cambridge Journals, visit journals.cambridge.org

About Cambridge University Press

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Its extensive peer-reviewed publishing lists comprise 45,000 titles covering academic research, professional development, over 350 research journals, school-level education, English language teaching and bible publishing.

Playing a leading role in today's international market place, Cambridge University Press has more than 50 offices around the globe, and it distributes its products to nearly every country in the world.

For further information about Cambridge University Press, visit cambridge.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.