Skip to main content
Top

2016 | OriginalPaper | Chapter

36. Nanoparticle Functionalization for Brain Targeting Drug Delivery and Diagnostic

Authors : Maria João Gomes, Bárbara Mendes, Susana Martins, Bruno Sarmento

Published in: Handbook of Nanoparticles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanobiotechnology has been demonstrated to be an efficient tool for targeted therapy as well as diagnosis, with particular emphasis on brain tumor and neurodegenerative diseases. On this regard, the aim of this chapter is focused on engineered nanoparticles targeted to the brain, so that they have the ability to overcome the blood–brain barrier (BBB) and enter the brain tissue. Firstly, it highlighted the difficulty of physically active molecules and colloidal carriers to overcome BBB, which is an impediment for the treatment of several brain diseases; then, the use of nanoparticles as advantageous carriers to cross the BBB and achieve brain, and their functionalization strategies are described; and finally the delivery of nanoparticles to the target moiety, as diagnostics or therapeutics. Therefore, this chapter is focused on how the nanoparticle surface may be functionalized for drug delivery and diagnostics. Furthermore, it is also mentioned that some BBB targets were already used as transport mediators to central nervous system by functionalization on nanoparticles. It summarizes the nanoparticles potential in therapeutics and molecular targeting to BBB, and also an approach of the nanoparticle-mediated drug transport across the BBB, where nanoparticles take advantage of physiological receptor-mediated transport processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.J. Abbott, Blood–brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 36, 1–13 (2013) N.J. Abbott, Blood–brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 36, 1–13 (2013)
2.
go back to reference N.J. Abbott, A.A. Patabendige, D.E. Dolman, S.R. Yusof, D.J. Begley, Structure and function of the blood–brain barrier. Neurobiol. Dis. 37(1), 13–25 (2010)CrossRef N.J. Abbott, A.A. Patabendige, D.E. Dolman, S.R. Yusof, D.J. Begley, Structure and function of the blood–brain barrier. Neurobiol. Dis. 37(1), 13–25 (2010)CrossRef
3.
go back to reference M.I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja, M. Akbar, Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40(5), 385–403 (2010)CrossRef M.I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja, M. Akbar, Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40(5), 385–403 (2010)CrossRef
4.
go back to reference D.D. Allen, P.R. Lockman, K.E. Roder, L.P. Dwoskin, P.A. Crooks, Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood–brain barrier choline transporter. J. Pharmacol. Exp. Ther. 304(3), 1268–1274 (2003)CrossRef D.D. Allen, P.R. Lockman, K.E. Roder, L.P. Dwoskin, P.A. Crooks, Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood–brain barrier choline transporter. J. Pharmacol. Exp. Ther. 304(3), 1268–1274 (2003)CrossRef
5.
go back to reference L. Araujo, R. Löbenberg, J. Kreuter, Influence of the surfactant concentration on the body distribution of nanoparticles. J. Drug Target. 6(5), 373–385 (1999)CrossRef L. Araujo, R. Löbenberg, J. Kreuter, Influence of the surfactant concentration on the body distribution of nanoparticles. J. Drug Target. 6(5), 373–385 (1999)CrossRef
6.
go back to reference A. Armulik, G. Genové, M. Mäe, M.H. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. Norlin, P. Lindblom, K. Strittmatter, Pericytes regulate the blood–brain barrier. Nature 468(7323), 557–561 (2010)CrossRef A. Armulik, G. Genové, M. Mäe, M.H. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. Norlin, P. Lindblom, K. Strittmatter, Pericytes regulate the blood–brain barrier. Nature 468(7323), 557–561 (2010)CrossRef
7.
go back to reference D.J. Begley, ABC transporters and the blood–brain barrier. Curr. Pharm. Des. 10(12), 1295–1312 (2004)CrossRef D.J. Begley, ABC transporters and the blood–brain barrier. Curr. Pharm. Des. 10(12), 1295–1312 (2004)CrossRef
8.
go back to reference S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J.M. de la Fuente, V. Grazu, P. Borm, G. Estrada, V. Ntziachristos, D. Razansky, Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 7, 3 (2010)CrossRef S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J.M. de la Fuente, V. Grazu, P. Borm, G. Estrada, V. Ntziachristos, D. Razansky, Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 7, 3 (2010)CrossRef
9.
go back to reference A. Bolhassani, Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta 1816(2), 232–246 (2011) A. Bolhassani, Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta 1816(2), 232–246 (2011)
10.
go back to reference I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.-J. Terrier-Lacombe, P. Couvreur, Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol. Exp. Ther. 303(3), 928–936 (2002)CrossRef I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.-J. Terrier-Lacombe, P. Couvreur, Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol. Exp. Ther. 303(3), 928–936 (2002)CrossRef
11.
go back to reference F.L. Cardoso, D. Brites, M.A. Brito, Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Rev. 64(2), 328–363 (2010)CrossRef F.L. Cardoso, D. Brites, M.A. Brito, Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Rev. 64(2), 328–363 (2010)CrossRef
12.
go back to reference Y. Chen, L. Liu, Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64(7), 640–665 (2012)CrossRef Y. Chen, L. Liu, Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64(7), 640–665 (2012)CrossRef
13.
go back to reference Y. Chen, G. Dalwadi, H.A. Benson, Drug delivery across the blood–brain barrier. Curr. Drug Deliv. 1(4), 361–376 (2004)CrossRef Y. Chen, G. Dalwadi, H.A. Benson, Drug delivery across the blood–brain barrier. Curr. Drug Deliv. 1(4), 361–376 (2004)CrossRef
14.
go back to reference Y.K. Choi, K.-W. Kim, Blood-neural barrier: its diversity and coordinated cell-to-cell communication. Genesis 10, 11 (2008) Y.K. Choi, K.-W. Kim, Blood-neural barrier: its diversity and coordinated cell-to-cell communication. Genesis 10, 11 (2008)
15.
go back to reference P. Couvreur, B. Kante, L. Grislain, M. Roland, P. Speiser, Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J. Pharm. Sci. 71, 790–792 (1982)CrossRef P. Couvreur, B. Kante, L. Grislain, M. Roland, P. Speiser, Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J. Pharm. Sci. 71, 790–792 (1982)CrossRef
16.
go back to reference S. Dauchy, F. Dutheil, R.J. Weaver, F. Chassoux, C. Daumas-Duport, P.O. Couraud, J.M. Scherrmann, I. De Waziers, X. Declèves, ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J. Neurochem. 107(6), 1518–1528 (2008)CrossRef S. Dauchy, F. Dutheil, R.J. Weaver, F. Chassoux, C. Daumas-Duport, P.O. Couraud, J.M. Scherrmann, I. De Waziers, X. Declèves, ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J. Neurochem. 107(6), 1518–1528 (2008)CrossRef
17.
go back to reference A. De Boer, P. Gaillard, Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007)CrossRef A. De Boer, P. Gaillard, Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007)CrossRef
18.
go back to reference M. Dean, Y. Hamon, G. Chimini, The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42(7), 1007–1017 (2001) M. Dean, Y. Hamon, G. Chimini, The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42(7), 1007–1017 (2001)
19.
go back to reference B. Dehouck, L. Fenart, M.-P. Dehouck, A. Pierce, G. Torpier, R. Cecchelli, A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol. 138(4), 877–889 (1997)CrossRef B. Dehouck, L. Fenart, M.-P. Dehouck, A. Pierce, G. Torpier, R. Cecchelli, A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J. Cell Biol. 138(4), 877–889 (1997)CrossRef
20.
go back to reference K.R. Duffy, W.M. Pardridge, Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420, 32–38 (1987)CrossRef K.R. Duffy, W.M. Pardridge, Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420, 32–38 (1987)CrossRef
21.
go back to reference K.R. Duffy, W.M. Pardridge, R.G. Rosenfeld, Human blood–brain barrier insulin-like growth factor receptor. Metabolism 37(2), 136–140 (1988)CrossRef K.R. Duffy, W.M. Pardridge, R.G. Rosenfeld, Human blood–brain barrier insulin-like growth factor receptor. Metabolism 37(2), 136–140 (1988)CrossRef
22.
go back to reference M. Fisher, Pericyte signaling in the neurovascular unit. Stroke 40(3 Suppl. 1), S13–S15 (2009)CrossRef M. Fisher, Pericyte signaling in the neurovascular unit. Stroke 40(3 Suppl. 1), S13–S15 (2009)CrossRef
23.
go back to reference M. Fisher, M. Abramov, A. Van Aerschot, D. Xu, R.L. Juliano, P. Herdewijn, Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res. 35(4), 1064–1074 (2007)CrossRef M. Fisher, M. Abramov, A. Van Aerschot, D. Xu, R.L. Juliano, P. Herdewijn, Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res. 35(4), 1064–1074 (2007)CrossRef
24.
go back to reference R. Gabathuler, Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37(1), 48–57 (2010)CrossRef R. Gabathuler, Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37(1), 48–57 (2010)CrossRef
25.
go back to reference P.J. Gaillard, A. Brink, A.G. de Boer, Diphtheria toxin receptor-targeted brain drug delivery. Int. Congr. Ser. 1277, 185–198 (2005)CrossRef P.J. Gaillard, A. Brink, A.G. de Boer, Diphtheria toxin receptor-targeted brain drug delivery. Int. Congr. Ser. 1277, 185–198 (2005)CrossRef
26.
go back to reference P.J. Gaillard, C.C. Appeldoorn, J. Rip, R. Dorland, S.M. van der Pol, G. Kooij, H.E. de Vries, A. Reijerkerk, Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J. Control. Release 164(3), 364–369 (2012)CrossRef P.J. Gaillard, C.C. Appeldoorn, J. Rip, R. Dorland, S.M. van der Pol, G. Kooij, H.E. de Vries, A. Reijerkerk, Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J. Control. Release 164(3), 364–369 (2012)CrossRef
27.
go back to reference A. Gessner, A. Lieske, B.R. Paulke, R.H. Muller, Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54(2), 165–170 (2002)CrossRef A. Gessner, A. Lieske, B.R. Paulke, R.H. Muller, Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54(2), 165–170 (2002)CrossRef
28.
go back to reference S. Gill, R. Löbenberg, T. Ku, S. Azarmi, W. Roa, E.J. Prenner, Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery – a review. J. Biomed. Nanotechnol. 3(2), 107–119 (2007)CrossRef S. Gill, R. Löbenberg, T. Ku, S. Azarmi, W. Roa, E.J. Prenner, Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery – a review. J. Biomed. Nanotechnol. 3(2), 107–119 (2007)CrossRef
29.
go back to reference J.L. Gilmore, X. Yi, L. Quan, A.V. Kabanov, Novel nanomaterials for clinical neuroscience. J. Neuroimmune Pharmacol. 3(2), 83–94 (2008)CrossRef J.L. Gilmore, X. Yi, L. Quan, A.V. Kabanov, Novel nanomaterials for clinical neuroscience. J. Neuroimmune Pharmacol. 3(2), 83–94 (2008)CrossRef
30.
go back to reference T.M. Goppert, R.H. Muller, Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target. 13(3), 179–187 (2005)CrossRef T.M. Goppert, R.H. Muller, Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target. 13(3), 179–187 (2005)CrossRef
31.
go back to reference A. Gulyaev, S. Gelperina, I. Skidan, A. Antropov, G. Kivman, J. Kreuter, Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16, 1564–1569 (1999)CrossRef A. Gulyaev, S. Gelperina, I. Skidan, A. Antropov, G. Kivman, J. Kreuter, Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16, 1564–1569 (1999)CrossRef
32.
go back to reference A. Hartz, B. Bauer, Regulation of ABC transporters at the blood–brain barrier: new targets for CNS therapy. Mol. Interv. 10(5), 293 (2010)CrossRef A. Hartz, B. Bauer, Regulation of ABC transporters at the blood–brain barrier: new targets for CNS therapy. Mol. Interv. 10(5), 293 (2010)CrossRef
33.
go back to reference F. Hervé, N. Ghinea, J.-M. Scherrmann, CNS delivery via adsorptive transcytosis. AAPS J. 10(3), 455–472 (2008)CrossRef F. Hervé, N. Ghinea, J.-M. Scherrmann, CNS delivery via adsorptive transcytosis. AAPS J. 10(3), 455–472 (2008)CrossRef
34.
go back to reference H. Hillaireau, P. Couvreur, Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66(17), 2873–2896 (2009)CrossRef H. Hillaireau, P. Couvreur, Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66(17), 2873–2896 (2009)CrossRef
35.
go back to reference G.H. Huynh, D.F. Deen, F.C. Szoka Jr., Barriers to carrier mediated drug and gene delivery to brain tumors. J. Control. Release 110(2), 236–259 (2006)CrossRef G.H. Huynh, D.F. Deen, F.C. Szoka Jr., Barriers to carrier mediated drug and gene delivery to brain tumors. J. Control. Release 110(2), 236–259 (2006)CrossRef
36.
go back to reference R.K. Jain, Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release 74, 7–25 (2001)CrossRef R.K. Jain, Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release 74, 7–25 (2001)CrossRef
37.
go back to reference K. Jain, Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine 1(1), 9–12 (2006)CrossRef K. Jain, Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine 1(1), 9–12 (2006)CrossRef
38.
39.
go back to reference S.W. Jones, R. Christison, K. Bundell, C.J. Voyce, S.M. Brockbank, P. Newham, M.A. Lindsay, Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145(8), 1093–1102 (2005)CrossRef S.W. Jones, R. Christison, K. Bundell, C.J. Voyce, S.M. Brockbank, P. Newham, M.A. Lindsay, Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145(8), 1093–1102 (2005)CrossRef
40.
go back to reference L. Juillerat-Jeanneret, The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today 13(23–24), 1099–1106 (2008)CrossRef L. Juillerat-Jeanneret, The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today 13(23–24), 1099–1106 (2008)CrossRef
41.
go back to reference I.P. Kaur, R. Bhandari, S. Bhandari, V. Kakkar, Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127(2), 97–109 (2008)CrossRef I.P. Kaur, R. Bhandari, S. Bhandari, V. Kakkar, Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127(2), 97–109 (2008)CrossRef
42.
go back to reference M. Lindgren, U. Langel, Classes and prediction of cell-penetrating peptides. Methods Mol. Biol. 683, 3–19 (2011)CrossRef M. Lindgren, U. Langel, Classes and prediction of cell-penetrating peptides. Methods Mol. Biol. 683, 3–19 (2011)CrossRef
43.
go back to reference C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution. Drug. Discov. Today Technol. 1(4), 337–341 (2004)CrossRef C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution. Drug. Discov. Today Technol. 1(4), 337–341 (2004)CrossRef
44.
go back to reference C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1), 3–25 (1997)CrossRef C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1), 3–25 (1997)CrossRef
45.
go back to reference L. Liu, K. Guo, J. Lu, S.S. Venkatraman, D. Luo, K.C. Ng, E.-A. Ling, S. Moochhala, Y.-Y. Yang, Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 29(10), 1509–1517 (2008)CrossRef L. Liu, K. Guo, J. Lu, S.S. Venkatraman, D. Luo, K.C. Ng, E.-A. Ling, S. Moochhala, Y.-Y. Yang, Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 29(10), 1509–1517 (2008)CrossRef
46.
go back to reference P. Lockman, R. Mumper, M. Khan, D. Allen, Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. 28(1), 1–13 (2002)CrossRef P. Lockman, R. Mumper, M. Khan, D. Allen, Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. 28(1), 1–13 (2002)CrossRef
47.
go back to reference P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen, Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J. Drug Target. 12(9–10), 635–641 (2004)CrossRef P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen, Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J. Drug Target. 12(9–10), 635–641 (2004)CrossRef
48.
go back to reference H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3(3), 319–328 (2003)CrossRef H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3(3), 319–328 (2003)CrossRef
49.
go back to reference S. Majumdar, T.J. Siahaan, Peptide-mediated targeted drug delivery. Med. Res. Rev. 32(3), 637–658 (2012)CrossRef S. Majumdar, T.J. Siahaan, Peptide-mediated targeted drug delivery. Med. Res. Rev. 32(3), 637–658 (2012)CrossRef
50.
go back to reference Y.M. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986) Y.M. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)
51.
go back to reference K. Michaelis, M.M. Hoffmann, S. Dreis, E. Herbert, R.N. Alyautdin, M. Michaelis, J. Kreuter, K. Langer, Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther. 317(3), 1246–1253 (2006)CrossRef K. Michaelis, M.M. Hoffmann, S. Dreis, E. Herbert, R.N. Alyautdin, M. Michaelis, J. Kreuter, K. Langer, Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther. 317(3), 1246–1253 (2006)CrossRef
52.
go back to reference T. Moos, E.H. Morgan, Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 20(1), 77–95 (2000)CrossRef T. Moos, E.H. Morgan, Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 20(1), 77–95 (2000)CrossRef
53.
go back to reference S.K. Murthy, Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomedicine 2(2), 129–141 (2007) S.K. Murthy, Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomedicine 2(2), 129–141 (2007)
54.
go back to reference K. Nagpal, S.K. Singh, D.N. Mishra, Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin. Drug Deliv. 10, 927–955 (2013)CrossRef K. Nagpal, S.K. Singh, D.N. Mishra, Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin. Drug Deliv. 10, 927–955 (2013)CrossRef
55.
go back to reference A. Nunes, K.T. Al-Jamal, K. Kostarelos, Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J. Control. Release 161(2), 290–306 (2012)CrossRef A. Nunes, K.T. Al-Jamal, K. Kostarelos, Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J. Control. Release 161(2), 290–306 (2012)CrossRef
56.
go back to reference W.M. Pardridge, Drug and gene delivery to the brain: the vascular route. Neuron 36(4), 555–558 (2002)CrossRef W.M. Pardridge, Drug and gene delivery to the brain: the vascular route. Neuron 36(4), 555–558 (2002)CrossRef
57.
go back to reference W.M. Pardridge, Blood–brain barrier drug targeting: the future of brain drug development. Mol. Interv. 3(2), 90 (2003)CrossRef W.M. Pardridge, Blood–brain barrier drug targeting: the future of brain drug development. Mol. Interv. 3(2), 90 (2003)CrossRef
58.
go back to reference W.M. Pardridge, The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2(1), 3–14 (2005)CrossRef W.M. Pardridge, The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2(1), 3–14 (2005)CrossRef
59.
go back to reference W.M. Pardridge, Blood–brain barrier delivery. Drug Discov. Today 12(1–2), 54–61 (2007)CrossRef W.M. Pardridge, Blood–brain barrier delivery. Drug Discov. Today 12(1–2), 54–61 (2007)CrossRef
60.
go back to reference W.M. Pardridge, J. Eisenberg, J. Yang, Human blood–brain barrier transferrin receptor. Metabolism 36(9), 892–895 (1987)CrossRef W.M. Pardridge, J. Eisenberg, J. Yang, Human blood–brain barrier transferrin receptor. Metabolism 36(9), 892–895 (1987)CrossRef
61.
go back to reference W.M. Pardridge, J.L. Buciak, P.M. Friden, Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J. Pharmacol. Exp. Ther. 259(1), 66–70 (1991) W.M. Pardridge, J.L. Buciak, P.M. Friden, Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J. Pharmacol. Exp. Ther. 259(1), 66–70 (1991)
62.
go back to reference M. Ribeiro, M. Castanho, I. Serrano, In vitro blood–brain barrier models-latest advances and therapeutic applications in a chronological perspective. Mini Rev. Med. Chem. 10(3), 263–271 (2010)CrossRef M. Ribeiro, M. Castanho, I. Serrano, In vitro blood–brain barrier models-latest advances and therapeutic applications in a chronological perspective. Mini Rev. Med. Chem. 10(3), 263–271 (2010)CrossRef
63.
go back to reference A. Saleh, M. Schroeter, C. Jonkmanns, H. Hartung, U. Mödder, S. Jander, In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004)CrossRef A. Saleh, M. Schroeter, C. Jonkmanns, H. Hartung, U. Mödder, S. Jander, In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004)CrossRef
64.
go back to reference S. Santaguida, D. Janigro, M. Hossain, E. Oby, E. Rapp, L. Cucullo, Side by side comparison between dynamic versus static models of blood? brain barrier in vitro: a permeability study. Brain Res. 1109(1), 1–13 (2006)CrossRef S. Santaguida, D. Janigro, M. Hossain, E. Oby, E. Rapp, L. Cucullo, Side by side comparison between dynamic versus static models of blood? brain barrier in vitro: a permeability study. Brain Res. 1109(1), 1–13 (2006)CrossRef
65.
go back to reference H. Santos, L. Bimbo, J. das Neves, B. Sarmento, Nanoparticulate targeted drug delivery using peptides and proteins, in Nanomedicine: Technologies and Applications, ed. by T.J. Webster (Woodhead Publishing Limited, Cambridge, 2012) H. Santos, L. Bimbo, J. das Neves, B. Sarmento, Nanoparticulate targeted drug delivery using peptides and proteins, in Nanomedicine: Technologies and Applications, ed. by T.J. Webster (Woodhead Publishing Limited, Cambridge, 2012)
66.
go back to reference K. Tahara, Y. Miyazaki, Y. Kawashima, J. Kreuter, H. Yamamoto, Brain targeting with surface-modified poly(d, l-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur. J. Pharm. Biopharm. 77(1), 84–88 (2011). doi:10.1016/j.ejpb.2010.11.002CrossRef K. Tahara, Y. Miyazaki, Y. Kawashima, J. Kreuter, H. Yamamoto, Brain targeting with surface-modified poly(d, l-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur. J. Pharm. Biopharm. 77(1), 84–88 (2011). doi:10.1016/j.ejpb.2010.11.002CrossRef
67.
go back to reference J.E. Vance, H. Hayashi, Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim. Biophys. Acta 1801(8), 806–818 (2010)CrossRef J.E. Vance, H. Hayashi, Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim. Biophys. Acta 1801(8), 806–818 (2010)CrossRef
68.
go back to reference J.S. Weinstein, C.G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W.D. Rooney, L.L. Muldoon, E.A. Neuwelt, Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 30(1), 15–35 (2010)CrossRef J.S. Weinstein, C.G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W.D. Rooney, L.L. Muldoon, E.A. Neuwelt, Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 30(1), 15–35 (2010)CrossRef
69.
go back to reference N. Weiss, F. Miller, S. Cazaubon, P.-O. Couraud, The blood–brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta 1788(4), 842–857 (2009)CrossRef N. Weiss, F. Miller, S. Cazaubon, P.-O. Couraud, The blood–brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta 1788(4), 842–857 (2009)CrossRef
70.
go back to reference B. Wilson, M.K. Samanta, K. Santhi, K.P. Kumar, N. Paramakrishnan, B. Suresh, Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 70(1), 75–84 (2008). doi:10.1016/j.ejpb.2008.03.009CrossRef B. Wilson, M.K. Samanta, K. Santhi, K.P. Kumar, N. Paramakrishnan, B. Suresh, Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 70(1), 75–84 (2008). doi:10.1016/j.ejpb.2008.03.009CrossRef
71.
go back to reference J.L. Winer, P.E. Kim, M. Law, C.Y. Liu, M.L. Apuzzo, Visualizing the future: enhancing neuroimaging with nanotechnology. World Neurosurg. 75(5–6), 626–637 (2011)CrossRef J.L. Winer, P.E. Kim, M. Law, C.Y. Liu, M.L. Apuzzo, Visualizing the future: enhancing neuroimaging with nanotechnology. World Neurosurg. 75(5–6), 626–637 (2011)CrossRef
72.
go back to reference S. Wohlfart, S. Gelperina, J. Kreuter, Transport of drugs across the blood–brain barrier by nanoparticles. J. Control. Release 161(2), 264–273 (2012)CrossRef S. Wohlfart, S. Gelperina, J. Kreuter, Transport of drugs across the blood–brain barrier by nanoparticles. J. Control. Release 161(2), 264–273 (2012)CrossRef
73.
go back to reference H. Xin, L. Chen, J. Gu, X. Ren, Z. Wei, J. Luo, Y. Chen, X. Jiang, X. Sha, X. Fang, Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int. J. Pharm. 402(1–2), 238–247 (2010)CrossRef H. Xin, L. Chen, J. Gu, X. Ren, Z. Wei, J. Luo, Y. Chen, X. Jiang, X. Sha, X. Fang, Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int. J. Pharm. 402(1–2), 238–247 (2010)CrossRef
Metadata
Title
Nanoparticle Functionalization for Brain Targeting Drug Delivery and Diagnostic
Authors
Maria João Gomes
Bárbara Mendes
Susana Martins
Bruno Sarmento
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-15338-4_42

Premium Partners