Over 1750 Total Lots Up For Auction at Five Locations - MA 04/30, NJ Cleansweep 05/02, TX 05/03, TX 05/06, NJ 05/08

Using a form of low-impulse electrical stimulation to the brain, documented by neuroimaging, researchers at the University of Ca

Press releases may be edited for formatting or style | September 29, 2017 European News
TISSUE THAT WAS CULTURED IN THE LAB USING PATIENT’S OWN CELL MATERIAL, OFFERS GREAT OPPORTUNITIES FOR REPAIRING DAMAGED ORGANS. KEEPING THIS TISSUE ALIVE IS A PROBLEM, ESPECIALLY FOR LARGE SURFACES. UT SCIENTIST JEROEN LEIJTEN WILL USE MICROSYSTEMS AND NANOTECHNOLOGY TO IMPROVE TISSUE’S VIABILITY.

As soon as we are able to repair damaged bone tissue using cell material of the patient, artificial solutions made from metal or plastics will not be necessary anymore. Creating small tissue parts for bone, cartilage and muscles is already possible. For an effective treatment of patients, however, larger tissue surfaces are often needed. At present, it is a problem to keep them alive due to a lack of adequate nutrition. Even using the last techniques, it is a problem to feed the whole tissue area fast enough. As a consequence, it will die. Jeroen Leijten of the University of Twente now found an innovative solution for keeping even large tissue areas alive. He receives a Starting Grant of 1,5 million euros for this, from the European Research Council.

PACKED LUNCH

Leijten will make use of technology on the micro and nano scale to tackle the problem. For a start, he wants to develop micro materials releasing oxygen in a controlled way. The materials work like a ‘packed lunch’, providing the implanted tissue with the basic necessities of life for a little while. Leijten plans to combine this approach with advanced 3D printing techniques creating a vascular network for the tissue. This guarantees survival on the long term.

REAL LIFE EXPERIMENT

In his project ‘ENABLE: advancing cell based therapies by supporting implant survival’, Leijten wants to test this new combination of techniques in a real-life example: repair of damaged bone using tissue from patient’s cells. If the techniques prove to be successful, this will be a crucial step towards more applications of tissue engineering.

Jeroen Leijten is with the Developmental BioEngineering group, which is part of UT’s MIRA Institute for Biomedical Technology and Technical Medicine.

You Must Be Logged In To Post A Comment