Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global opportunities and challenges for transboundary conservation

Abstract

Rapid biodiversity loss has prompted global action to prevent further declines, yet coordinated conservation action among nations remains elusive. As a result, species with ranges that span international borders—which include 53.8% of terrestrial birds, mammals and amphibians—are in increasing peril through uncoordinated management and artificial barriers to human movement, such as border fences. Transboundary conservation initiatives represent a unique opportunity to better protect species through coordinated management across national borders. Using metrics of governance, collaboration and human pressure, we provide an index of transboundary conservation feasibility to assess global opportunities and challenges for different nations. While the transboundary conservation potential of securing multinational threatened species varied substantially, there are distinct opportunities in South-East Asia, Northern Europe, North America and South America. But to successfully avert the loss of transboundary species, the global community must be prepared to invest in some regions facing greater implementation challenges, including the nations of Central Africa, where efforts may necessitate establishing rapid conservation interventions postconflict that align with local socio-cultural opportunities and constraints. Sanctioned and coordinated approaches towards managing transboundary species are now essential to prevent further declines of many endangered species, and global policy efforts must do more to produce and enact legitimate mechanisms for collaborative action in conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework for determining the global potential for transboundary conservation.
Fig. 2: Proportions of terrestrial species with transboundary ranges.
Fig. 3: Distribution of threatened species richness and feasibility scores.
Fig. 4: Global opportunities for transboundary conservation.

Similar content being viewed by others

Data availability

The datasets analysed in this paper are available via the UQ eSpace digital repository at https://doi.org/10.14264/uql.2020.156 (ref. 68).

Code availability

Transboundary species richness and feasibility were calculated using a combination of Python v.2.7 (ref. 62) and ESRI ArcMap v.10 (ref. 63). The Python code is available from the corresponding author upon reasonable request.

References

  1. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kark, S. et al. Cross-boundary collaboration: key to the conservation puzzle. Curr. Opin. Environ. Sustain. 12, 12–24 (2015).

    Article  Google Scholar 

  3. Convention on the Conservation of Migratory Species of Wild Animals (CMS, 1979); https://go.nature.com/33bnjgr

  4. Rands, M. R. W. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Trouwborst, A. Transboundary wildlife conservation in a changing climate: adaptation of the Bonn Convention on migratory species and its daughter instruments to climate change. Diversity 4, 258–300 (2012).

    Article  Google Scholar 

  6. Ecological Connectivity in the Post-2020 Global Biodiversity Framework (CMS, 2019); https://go.nature.com/38GB6Nf

  7. Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).

    Article  Google Scholar 

  8. Hannah, L. A global conservation system for climate-change adaptation: special section. Conserv. Biol. 24, 70–77 (2010).

    Article  PubMed  Google Scholar 

  9. Lambertucci, S. A. et al. Apex scavenger movements call for transboundary conservation policies. Biol. Conserv. 170, 145–150 (2014).

    Article  Google Scholar 

  10. Thornton, D. H. et al. Asymmetric cross-border protection of peripheral transboundary species. Conserv. Lett. 11, e12430 (2018).

    Article  Google Scholar 

  11. Trouwborst, A., Krofel, M. & Linnell, J. D. C. Legal implications of range expansions in a terrestrial carnivore: the case of the golden jackal (Canis aureus) in Europe. Biodivers. Conserv. 24, 2593–2610 (2015).

    Article  Google Scholar 

  12. Flesch, A. D. et al. Potential effects of the United States–Mexico border fence on wildlife: contributed paper. Conserv. Biol. 24, 171–181 (2010).

    Article  PubMed  Google Scholar 

  13. Linnell, J. D. C. et al. Border security fencing and wildlife: the end of the transboundary paradigm in Eurasia? PLoS Biol. 14, e1002483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caddell, R. International law and the protection of migratory wildlife: an appraisal of twenty-five years of the Bonn Convention. Colo. J. Int. Environ. Law Policy 16, 113–156 (2005).

    Google Scholar 

  15. Trouwborst, A. et al. International law and lions (Panthera leo): understanding and improving the contribution of wildlife treaties to the conservation and sustainable use of an iconic carnivore. Nat. Conserv. 21, 83–128 (2017).

    Article  Google Scholar 

  16. Barquet, K. ‘Yes to peace’? Environmental peacemaking and transboundary conservation in Central America. Geoforum 63, 14–24 (2015).

    Article  Google Scholar 

  17. Beyers, R. L. et al. Resource wars and conflict ivory: the impact of civil conflict on elephants in the Democratic Republic of Congo—the case of the okapi reserve. PLoS ONE 6, e27129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaynor, K. M. et al. War and wildlife: linking armed conflict to conservation. Front. Ecol. Environ. 14, 533–542 (2016).

    Article  Google Scholar 

  19. Kark, S., Levin, N., Grantham, H. S. & Possingham, H. P. Between-country collaboration and consideration of costs increase conservation planning efficiency in the Mediterranean Basin. Proc. Natl Acad. Sci. USA 106, 15368–15373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mazor, T., Possingham, H. P. & Kark, S. Collaboration among countries in marine conservation can achieve substantial efficiencies. Divers. Distrib. 19, 1380–1393 (2013).

    Article  Google Scholar 

  21. Mazor, T., Giakoumi, S., Kark, S. & Possingham, H. P. Large-scale conservation planning in a multinational marine environment: cost matters. Ecol. Appl. 24, 1115–1130 (2014).

    Article  PubMed  Google Scholar 

  22. Runting, R. K. et al. Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nat. Commun. 6, 6819 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    Article  CAS  Google Scholar 

  24. Boschee, E. et al. ICEWS Coded Event Data (Harvard Dataverse, 2015); https://doi.org/10.7910/DVN/28075

  25. Worldwide Governance Indicators (World Bank Group, 2017); https://go.nature.com/33afIPl

  26. Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharm El-Sheikh Declaration Investing in Biodiversity for People and Planet (CBD, 2018). https://go.nature.com/2Q0ZWB6

  28. SBSTTA Informing the Scientific and Technical Evidence Base for the Post-2020 Global Biodiversity Framework Overview (CBD, 2019); https://go.nature.com/38KpV6p

  29. King, B. & Wilcox, S. Peace Parks and jaguar trails: transboundary conservation in a globalizing world. GeoJournal 71, 221–231 (2008).

    Article  Google Scholar 

  30. Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Barquet, K., Lujala, P. & Rød, J. K. Transboundary conservation and militarized interstate disputes. Polit. Geogr. 42, 1–11 (2014).

    Article  Google Scholar 

  32. Schoon, M. Governance in transboundary conservation: how institutional structure and path dependence matter. Conserv. Soc. 11, 420–428 (2013).

    Article  Google Scholar 

  33. Lindsey, P. A. et al. Underperformance of African protected area networks and the case for new conservation models: insights from Zambia. PLoS ONE 9, e94109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lim, M. Governance criteria for effective transboundary biodiversity conservation. Int. Environ. Agreements Polit. Law Econ. 16, 797–813 (2016).

    Article  Google Scholar 

  35. Lim, M. Strengthening the legal and institutional effectiveness of transboundary biodiversity conservation in the ‘Heart of Borneo’. Asia Pacific J. Environ. Law 17, 65–89 (2014).

    Google Scholar 

  36. Levin, N., Beger, M., Maina, J., McClanahan, T. & Kark, S. Evaluating the potential for transboundary management of marine biodiversity in the Western Indian Ocean. Australas. J. Environ. Manage. 25, 62–85 (2018).

    Article  Google Scholar 

  37. Chester, C. C. Yellowstone to Yukon: transborder conservation across a vast international landscape. Environ. Sci. Policy 49, 75–84 (2015).

    Article  Google Scholar 

  38. Graumlich, L. & Francis, W. L. (eds) Moving Toward Climate Change Adaptation: The promise of the Yellowstone to Yukon Conservation Initiative for addressing the region’s vulnerabilities (Yellowstone to Yukon Conservation Initiative, 2010).

  39. Troupin, D. & Carmel, Y. Can agro-ecosystems efficiently complement protected area networks? Biol. Conserv. 169, 158–166 (2014).

    Article  Google Scholar 

  40. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Heart of Borneo Initiative (WWF, 2011).

  42. Plumptre, A. J., Kujirakwinja, D., Treves, A., Owiunji, I. & Rainer, H. Transboundary conservation in the greater Virunga landscape: its importance for landscape species. Biol. Conserv. 134, 279–287 (2007).

    Article  Google Scholar 

  43. Martin, A., Rutagarama, E., Casca, A., Gray, M. & Chhotray, V. Understanding the co-existence of conflict and cooperation: transboundary ecosystem management in the Virunga Massif. J. Peace Res. 48, 621–635 (2011).

    Article  Google Scholar 

  44. Rainer, H. et al. Regional conservation in the Virunga-Bwindi region. J. Sustain. For. 17, 189–204 (2003).

    Article  Google Scholar 

  45. Sandwith, T., Shine, C., Hamilton, L. & Sheppard, D. Transboundary Protected Areas for Peace and Co-operation (IUCN, 2001).

  46. Duffy, R. The politics of global environmental governance: the powers and limitations of transfrontier conservation areas in Central America. Rev. Int. Stud. 31, 307–323 (2005).

    Article  Google Scholar 

  47. Rodríguez, J. P. et al. Globalization of conservation: a view from the South. Science 317, 755–756 (2007).

    Article  PubMed  Google Scholar 

  48. Muboko, N. The role of transfrontier conservation areas and their institutional framework in natural resource-based conflict management: a review. J. Sustain. For. 36, 583–603 (2017).

    Article  Google Scholar 

  49. Amahowé, I. O., Ashanti, L. G. H. S. & Tehou, A. C. Transboundary protected areas management: experiences from W-Arly-Pendjari parks in West Africa. Parks 19, 95–105 (2013).

    Article  Google Scholar 

  50. Muchapondwa, E. & Stage, J. Whereto with institutions and governance challenges in African wildlife conservation? Environ. Res. Lett. 10, 095013 (2015).

    Article  Google Scholar 

  51. Bulte, E. H. & Horan, R. D. Habitat conservation, wildlife extraction and agricultural expansion. J. Environ. Econ. Manage. 45, 109–127 (2003).

    Article  Google Scholar 

  52. Taylor, R. Community based natural resource management in Zimbabwe: the experience of CAMPFIRE. Biodivers. Conserv. 18, 2563–2583 (2009).

    Article  Google Scholar 

  53. Tchakatumba, P. K., Gandiwa, E., Mwakiwa, E., Clegg, B. & Nyasha, S. Does the CAMPFIRE programme ensure economic benefits from wildlife to households in Zimbabwe? Ecosyst. People 15, 119–135 (2019).

    Article  Google Scholar 

  54. Duffy, R. The potential and pitfalls of global environmental governance: the politics of transfrontier conservation areas in Southern Africa. Polit. Geogr. 25, 89–112 (2006).

    Article  Google Scholar 

  55. Rio Declaration on Environment and Development (United Nations General Assembly, 1992).

  56. The IUCN Red List of Threatened Species Version 2017.5.2 (IUCN, 2017); http://www.iucnredlist.org

  57. Bird Species Distribution Maps of the World Version 7.0 (BirdLife International and Handbook of the Birds of the World, 2017); http://datazone.birdlife.org/species/requestdis

  58. Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article  Google Scholar 

  59. Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. GADM Database of Global Administrative Areas Version 2.8 (GADM, 2015); https://gadm.org

  61. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, 2602–2610 (2013).

    Article  Google Scholar 

  62. van Rossum, G. & The Python Community The Python Programming Language (The Python Software Foundation, 2012).

  63. ESRI ArcGIS Desktop: Release 10.5 (Environmental Systems Research Institute, 2017).

  64. Frank, M. R. et al. Detecting reciprocity at a global scale. Sci. Adv. 4, eaao5348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).

    Article  Google Scholar 

  66. Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. ESRI Data and Maps World Continents (Environmental Systems Research Institute, 2018).

  68. Mason, N., Ward, M., Watson, J. E. M., Venter, O. & Runting, R. K. Data from: Global Opportunities and Challenges for Transboundary Conservation (UQ eSpace digital repository, 2020); https://doi.org/10.14264/uql.2020.156

Download references

Acknowledgements

This research was supported by Australian Research Council Discovery Project grant no. DP160101397. The work was also funded by the NASA Biodiversity and Ecological Forecasting Program under the 2016 ECO4CAST solicitation through grant no. NNX17AG51G.

Author information

Authors and Affiliations

Authors

Contributions

R.K.R., J.E.M.W. and O.V. conceived the study. N.M. conducted the analyses with assistance from M.W. and R.K.R. All authors contributed to the interpretation of the results. N.M. led the writing of the manuscript with input from all authors.

Corresponding author

Correspondence to Natalie Mason.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Number of transboundary species with ranges that span national borders.

Number of transboundary species with ranges that span national borders. Figure includes species of any threat status, including least concern.

Extended Data Fig. 2 Raw values used in the feasibility index.

Raw values used in the feasibility index. Shows (a) collaboration (Goldstein) Score calculated for each country pair over the time period 1995-2017, and (b) mean governance score for each country pair over the time period 1996-2016 calculated using the Worldwide Governance Indicators.

Extended Data Fig. 3 Human pressure score sensitivity to changes in human pressure by altering buffer width.

Sensitivity to changes in human pressure by altering buffer width. This shows the mean human footprint and standard deviation calculated using line buffer widths of (a, b) 10km, (c, d) 50km and, (e, f) 100km over the human footprint dataset 2013.

Extended Data Fig. 4 Changes in global feasibility scores under different temporal and spatial analysis.

Changes in global feasibility scores under different temporal and spatial analysis. This shows how global feasibility scores shift when restricting the length of timescale for governance and collaboration data from (a) the 20-year timescale, (b) past 10 years, (c) a 5-year period (2011-2015) around the 2013 human footprint dataset, (d) a 5-year period (1998-2002) around the 2000 human footprint dataset. We showed how feasibility scores shift when using a 100km buffer (e) with the original 20-year timescale. Grey lines indicate borders where there was no calculable feasibility score.

Supplementary information

Supplementary Information

Supplementary discussion and sensitivity analysis.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, N., Ward, M., Watson, J.E.M. et al. Global opportunities and challenges for transboundary conservation. Nat Ecol Evol 4, 694–701 (2020). https://doi.org/10.1038/s41559-020-1160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1160-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing