Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma

Abstract

The prognosis role of CCT3 in MM and the possible pathways it involved were studied in our research. By analyzing ten independent datasets (including 48 healthy donors, 2220 MM, 73 MGUS, and 6 PCL), CCT3 was found to express higher in MM than healthy donors, and the expression level was gradually increased from MGUS, SMM, MM to PCL (all Pā€‰<ā€‰0.01). By analyzing three independent datasets (GSE24080, GSE2658, and GSE4204), we found that CCT3 was a significant indicator of poor prognosis (all Pā€‰<ā€‰0.01). KEGG and GSEA analysis showed that CCT3 expression was associated with JAK-STAT3 pathway, Hippo signaling pathway, and WNT signaling pathway. In addition, different expressed genes analysis revealed MYC, which was one of the downstream genes regulated by JAK-STAT3 pathway, was upregulated in MM. This confirms that JAK-STAT3 signaling pathway may promote the progress of disease which was regulated by CCT3 expression. Our study revealed that CCT3 may play a supporting role at the diagnosis of myeloid, and high expression of CCT3 suggested poor prognosis in MM. CCT3 expression may promote the progression of MM mainly by regulating MYC through JAK-STAT3 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MM progression was associated with the expression of CCT3.
Fig. 2: The expression level of CCT3 was related to different types of MM.
Fig. 3: High CCT3 expression was associated with adverse outcomes in MM patients.
Fig. 4: CCT3 expression related signaling pathways in MM.
Fig. 5: Different expression genes (DEGs) between CCT3high and CCT3low group in MM patients.

Similar content being viewed by others

References

  1. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl J Med. 2016;375:754ā€“66.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Chavan SS, He J, Tytarenko R, Deshpande S, Patel P, Bailey M, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7:e535.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Hideshima T, Cottini F, Nozawa Y, Seo HS, Ohguchi H, Samur MK, et al. p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017;129:1308ā€“19.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Zhang W, Lin Y, Liu X, He X, Zhang Y, Fu W, et al. Prediction and prognostic significance of BCAR3 expression in patients with multiple myeloma. J Transl Med. 2018;16:363.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Zhang W, Zhang Y, Yang Z, Liu X, Yang P, Wang J, et al. High expression of UBE2T predicts poor prognosis and survival in multiple myeloma. Cancer Gene Ther. 2019. https://doi.org/10.1038/s41417-018-0070-x.

  6. Solimando AG, Brandl A, Mattenheimer K, Graf C, Ritz M, Ruckdeschel A, et al. JAM-A as a prognostic factor and new therapeutic target in multiple myeloma. Leukemia. 2018;32:736ā€“43.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Hao M, Zang M, Wendlandt E, Xu Y, An G, Gong D, et al. Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer. 2015;136:1835ā€“44.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Poon TCW, Wong N, Lai PBS, Rattray M, Johnson PJ, Sung JJY. A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology. 2006;131:1262ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Gu J, Xuan Z. Inferring the perturbed microRNA regulatory networks in cancer using hierarchical gene co-expression signatures. PLoS ONE. 2013;8:e81032.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol. 2005;17:559ā€“64.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Yang X, Ren H, Shao Y, Sun Y, Zhang L, Li H, et al. Chaperonin-containing T-complex protein 1 subunit 8 promotes cell migration and invasion in human esophageal squamous cell carcinoma by regulating Ī±-Actin and Ī²-tubulin expression. Int J Oncol. 2018;52:2021ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Shi X, Cheng S, Wang W. Suppression of CCT3 inhibits malignant proliferation of human papillary thyroid carcinoma cell. Oncol Lett. 2018;15:9202ā€“8.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Li LJ, Zhang LS, Han ZJ, He ZY, Chen H, Li YM. Chaperonin containing TCP-1 subunit 3 is critical for gastric cancer growth. Oncotarget. 2017;8:111470ā€“81.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Song Y, Li S, Ray A, Das DS, Qi J, Samur MK, et al. Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene. 2017;36:5631ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Kang YJ, Zeng W, Song W, Reinhold B, Choi J, Brusic V, et al. Identification of human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T lymphocyte epitopes derived from HLA-DObeta as a novel target for multiple myeloma. Br J Haematol. 2013;163:343ā€“51.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Chauhan D, Tian Z, Nicholson B, Kumar KGS, Zhou B, Carrasco R, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22:345ā€“58.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007;109:1692ā€“700.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Driscoll JJ, Pelluru D, Lefkimmiatis K, Fulciniti M, Prabhala RH, Greipp PR, et al. The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood. 2010;115:2827ā€“34.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67:2982ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi C-X, Que Q, et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood. 2010;115:1594ā€“604.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona FV, et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia. 2010;24:629ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Heuck CJ, Szymonifka J, Hansen E, Shaughnessy JDJ, Usmani SZ, van Rhee F, et al. Thalidomide in total therapy 2 overcomes inferior prognosis of myeloma with low expression of the glucocorticoid receptor gene NR3C1. Clin Cancer Res. 2012;18:5499ā€“506.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, Samuelson FW, et al. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res. 2010;12:R5.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol. 2010;28:827ā€“38.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Mitchell JS, Li N, Weinhold N, Forsti A, Ali M, van Duin M, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Hanamura I, Huang Y, Zhan F, Barlogie B, Shaughnessy J. Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia. 2006;20:1288ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Chen L, Wang S, Zhou Y, Wu X, Entin I, Epstein J, et al. Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood. 2010;115:61ā€“70.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Qiang Y-W, Ye S, Huang Y, Chen Y, Van Rhee F, Epstein J, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18:724.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Went M, Sud A, Forsti A, Halvarsson B-M, Weinhold N, Kimber S, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9:3707.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Papanikolaou X, Alapat D, Rosenthal A, Stein C, Epstein J, Owens R, et al. The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma. Leukemia. 2015;29:1713ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267ā€“73.

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545ā€“50.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Yasui W, Oue N, Phyu PA, Matsumura S, Shutoh M, Nakayama H. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer. 2005;8:86ā€“94.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Midorikawa Y, Sugiyama Y, Aburatani H. Molecular targets for liver cancer therapy: from screening of target genes to clinical trials. Hepatol Res. 2010;40:49ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Cui X, Hu ZP, Li Z, Gao PJ, Zhu JY. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol. 2015;21:8588ā€“604.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Zhang Z, Xu L, Sun C. Comprehensive characterization of cancer genes in hepatocellular carcinoma genomes. Oncol Lett. 2018;15:1503ā€“10.

    PubMedĀ  Google ScholarĀ 

  39. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. Multiple myeloma Version 3. 2019. https://www.nccn.org/professionals/physician_gls/default.aspx#. Accessed 19 June 2019.

  40. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues (Revised 4th edition). Lyon: IARC; 2017.

    Google ScholarĀ 

  41. Qian EN, Han SY, Ding SZ, Lv X. Expression and diagnostic value of CCT3 and IQGAP3 in hepatocellular carcinoma. Cancer Cell Int. 2016;16:55.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAK-STAT. 2013;2:e23828.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Horvath CM. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci. 2000;25:496ā€“502.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 2012;30:1005ā€“14.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. CuƩllar J, Ludlam WG, Tensmeyer NC, Aoba T, Dhavale M, Santiago C, et al. Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nat Commun. 2019;10:2865.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Morales JK, Falanga YT, Depcrynski A, Fernando J, Ryan JJ. Mast cell homeostasis and the JAK-STAT pathway. Genes Immun. 2010;11:599ā€“608.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Barron DA, Kagey JD. The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med. 2014;3:25.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491ā€“505.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Staal FJT, Clevers HC. WNT signalling and haematopoiesis: A WNT-WNT situation. Nat Rev Immunol. 2005;5:21ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by grants from Xinjiang Joint Fund of National Natural Science Foundation of China (U1903117), the National Natural Science Foundation of China (81500118) to LF; and the National Natural Science Foundation of China (81600089) to JC. We thank the GEO Database and all the providers of datasets used in this report. Including GSE39754, GSE5900, GSE2113, GSE6477, GSE16558, GSE82307, GSE38627, GSE24080, GSE2658, and GSE4204.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Fu or Chaozeng Si.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T., Cui, L., Liu, Y. et al. High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma. Pharmacogenomics J 20, 563ā€“573 (2020). https://doi.org/10.1038/s41397-019-0145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0145-6

This article is cited by

Search

Quick links