New approach produces strong antidotal efficacy in treating lethal botulism in animals

NewsGuard 100/100 Score

Related to new research published in the January issue of Science Translational Medicine, Patrick McNutt, PhD, of the Wake Forest Institute for Regenerative Medicine, was part of the research team that demonstrated a new "Trojan horse" approach that produces strong antidotal efficacy in treating lethal botulism in mice, guinea pigs and rhesus macaque monkeys.

Furthermore, in a companion article, an independent team demonstrated that a related drug has robust efficacy in mice.

This is one of those serendipitous moments in science where two groups, working independently, demonstrate similar results for a long-standing problem. We are currently modifying this drug to enhance its therapeutic properties against botulism and exploring whether the same approach can be repurposed to treat other neuronal diseases."

Patrick McNutt, PhD, Wake Forest Institute for Regenerative Medicine

In 2010, Konstantin Ichtchenko (New York University School of Medicine) conceived of a novel 'trojan horse' strategy to treat botulism. This strategy is based on using a non-toxic form of BoNT to deliver therapeutic antibodies to paralyzed neurons, blocking wild-type toxin activity and accelerating recovery from paralysis.

Over the past decade, Konstantin established collaborations with Patrick McNutt (Wake Forest Institute of Regenerative Medicine), Phil Band (Cytodel, Inc.) and Chuck Shoemaker (Tufts University) to develop and test this new drug in a variety of experimental models.

Botulinum neurotoxins (BoNTs) are a family of bacterial poisons responsible for the clinical disease known as botulism. BoNT acts within nerve terminals to destroy proteins necessary for evoking muscle contraction, causing muscle paralysis that develops into respiratory arrest at lethal concentrations. BoNT is the most poisonous substances known, with median lethal doses that are over a million-fold lower than cyanide.

Because of its extraordinary potency and long duration of action, the toxin is considered a Tier 1 agent by the CDC, which is reserved for the most dangerous public threats.

These same properties render BoNT a highly effective cosmetic and therapeutic drug (e.g., BOTOX) with diverse clinical indications. Despite decades of effort, there are no antidotes for the life-threatening consequences of botulism. This failure is primarily because the toxin hides within the nerve terminal, where it poses a challenging target for delivery of therapeutic molecules.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Hypoglossal nerve stimulation offers hope for pediatric Down syndrome patients with OSA