Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery

Abstract

Drug discovery has traditionally focused on using libraries of small molecules to identify therapeutic drugs, but new modalities, especially libraries of genetically encoded cyclic peptides, are increasingly used for this purpose. Several technologies now exist for the production of libraries of cyclic peptides, including phage display, mRNA display and split-intein circular ligation of peptides and proteins. These different approaches are each compatible with particular methods of screening libraries, such as functional or affinity-based screening, and screening in vitro or in cells. These techniques allow the rapid preparation of libraries of hundreds of millions of molecules without the need for chemical synthesis, and have therefore lowered the entry barrier to generating and screening for inhibitors of a given target. This ease of use combined with the inherent advantages of the cyclic-peptide scaffold has yielded inhibitors of targets that have proved difficult to drug with small molecules. Multiple reports demonstrate that cyclic peptides act as privileged scaffolds in drug discovery, particularly against ‘undruggable’ targets such as protein–protein interactions. Although substantial challenges remain in the clinical translation of hits from screens of cyclic-peptide libraries, progress continues to be made in this area, with an increasing number of cyclic peptides entering clinical trials. Here, we detail the various platforms for producing and screening libraries of genetically encoded cyclic peptides and discuss and evaluate the advantages and disadvantages of each approach when deployed for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biopanning of a phage-display library.
Fig. 2: Methods for the generation of bicyclic peptides displayed on bacteriophages.
Fig. 3: Overview of mRNA display.
Fig. 4: Generating cyclic peptides for mRNA display.
Fig. 5: The mechanism of cyclic-peptide production by SICLOPPS.
Fig. 6: The bacterial reverse two-hybrid system.

Similar content being viewed by others

References

  1. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery — an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    CAS  PubMed  Google Scholar 

  2. Marsault, E. & Peterson, M. L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54, 1961–2004 (2011).

    CAS  PubMed  Google Scholar 

  3. Tavassoli, A. SICLOPPS cyclic peptide libraries in drug discovery. Curr. Opin. Chem. Biol. 38, 30–35 (2017).

    CAS  PubMed  Google Scholar 

  4. Freidinger, R. M., Veber, D. F., Perlow, D. S., Brooks, J. R. & Saperstein, R. Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 210, 656–658 (1980).

    CAS  PubMed  Google Scholar 

  5. Veber, D. F. et al. Nonreducible cyclic analogues of somatostatin. J. Am. Chem. Soc. 98, 2367–2369 (1976).

    CAS  Google Scholar 

  6. Foster, A. D. et al. Methods for the creation of cyclic peptide libraries for use in lead discovery. J. Biomol. Screen. 20, 563–576 (2015).

    CAS  PubMed  Google Scholar 

  7. Mistry, I. N. & Tavassoli, A. Reprogramming the transcriptional response to hypoxia with a chromosomally encoded cyclic peptide HIF-1 inhibitor. ACS Synth. Biol. 6, 518–527 (2017).

    CAS  PubMed  Google Scholar 

  8. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    CAS  PubMed  Google Scholar 

  9. Tapeinou, A., Matsoukas, M.-T., Simal, C. & Tselios, T. Review cyclic peptides on a merry-go-round; towards drug design. Pept. Sci. 104, 453–461 (2015).

    CAS  Google Scholar 

  10. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lam, K. S., Lebl, M. & Krchňák, V. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    CAS  PubMed  Google Scholar 

  12. Qian, Z., Upadhyaya, P. & Pei, D. Synthesis and screening of one-bead-one-compound cyclic peptide libraries. Methods Mol. Biol. 1248, 39–53 (2015).

    CAS  PubMed  Google Scholar 

  13. Rhodes, C. A. et al. Cell-permeable bicyclic peptidyl inhibitors against NEMO-IkappaB kinase interaction directly from a combinatorial library. J. Am. Chem. Soc. 140, 12102–12110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Trinh, T. B., Upadhyaya, P., Qian, Z. & Pei, D. Discovery of a direct Ras inhibitor by screening a combinatorial library of cell-permeable bicyclic peptides. ACS Comb. Sci. 18, 75–85 (2016).

    CAS  PubMed  Google Scholar 

  15. Lau, Y. H., de Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015).

    CAS  PubMed  Google Scholar 

  16. Bashiruddin, N. K. & Suga, H. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Curr. Opin. Chem. Biol. 24, 131–138 (2015).

    CAS  PubMed  Google Scholar 

  17. Smith, G. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985). This is the first report of phage display.

    CAS  PubMed  Google Scholar 

  18. Nemoto, N., Miyamoto-Sato, E., Husimi, Y. & Yanagawa, H. In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

    CAS  PubMed  Google Scholar 

  19. Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997). This is the first report of mRNA display.

    CAS  PubMed  Google Scholar 

  20. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    CAS  PubMed  Google Scholar 

  21. Lawrence, S. Billion dollar babies — biotech drugs as blockbusters. Nat. Biotechnol. 25, 380–382 (2007).

    CAS  PubMed  Google Scholar 

  22. Parmley, S. F. & Smith, G. P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318 (1988).

    CAS  PubMed  Google Scholar 

  23. Scott, J. K. & Smith, G. P. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    CAS  PubMed  Google Scholar 

  24. Bazan, J., Całkosiński, I. & Gamian, A. Phage display — a powerful technique for immunotherapy. Hum. Vaccin. Immunother. 8, 1817–1828 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hertveldt, K., Beliën, T. & Volckaert, G. General M13 phage display: M13 phage display in identification and characterization of protein–protein interactions. Methods Mol. Biol. 502, 321–339 (2009).

    CAS  PubMed  Google Scholar 

  26. Luzzago, A., Felici, F., Tramontano, A., Pessi, A. & Cortese, R. Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene 128, 51–57 (1993).

    CAS  PubMed  Google Scholar 

  27. McLafferty, M. A., Kent, R. B., Ladner, R. C. & Markland, W. M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128, 29–36 (1993).

    CAS  PubMed  Google Scholar 

  28. Barry, M. A., Dower, W. J. & Johnston, S. A. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat. Med. 2, 299–305 (1996).

    CAS  PubMed  Google Scholar 

  29. Wu, C.-H., Liu, I.-J., Lu, R.-M. & Wu, H.-C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci. 23, 8 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Hansen, M. et al. A urokinase-type plasminogen activator-inhibiting cyclic peptide with an unusual P2 residue and an extended protease binding surface demonstrates new modalities for enzyme inhibition. J. Biol. Chem. 280, 38424–38437 (2005).

    CAS  PubMed  Google Scholar 

  31. Andersen, L. M., Wind, T., Hansen, H. D. & Andreasen, P. A. A cyclic peptidylic inhibitor of murine urokinase-type plasminogen activator: changing species specificity by substitution of a single residue. Biochem. J. 412, 447–457 (2008).

    CAS  PubMed  Google Scholar 

  32. Gho, Y. S., Lee, J. E., Oh, K. S., Bae, D. G. & Chae, C. B. Development of antiangiogenin peptide using a phage-displayed peptide library. Cancer Res. 57, 3733–3740 (1997).

    CAS  PubMed  Google Scholar 

  33. O’Neil, K. T. et al. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins 14, 509–515 (1992).

    PubMed  Google Scholar 

  34. Ho, K. L., Yusoff, K., Seow, H. F. & Tan, W. S. Selection of high affinity ligands to hepatitis B core antigen from a phage-displayed cyclic peptide library. J. Med. Virol. 69, 27–32 (2003).

    CAS  PubMed  Google Scholar 

  35. Tan, W. S., Tan, G. H., Yusoff, K. & Seow, H. F. A phage-displayed cyclic peptide that interacts tightly with the immunodominant region of hepatitis B surface antigen. J. Clin. Virol. 34, 35–41 (2005).

    CAS  PubMed  Google Scholar 

  36. Dyson, M. R. & Murray, K. Selection of peptide inhibitors of interactions involved in complex protein assemblies: association of the core and surface antigens of hepatitis B virus. Proc. Natl Acad. Sci. USA 92, 2194–2198 (1995).

    CAS  PubMed  Google Scholar 

  37. Even-Desrumeaux, K. & Chames, P. Phage display and selections on cells. Methods Mol. Biol. 907, 225–235 (2012).

    CAS  PubMed  Google Scholar 

  38. Mangini, M. et al. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 8, 5179–5195 (2017).

    PubMed  Google Scholar 

  39. Hussain, S. et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2, 95–103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mann, A. P. et al. Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nat. Commun. 8, 1403 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009). This paper reports the generation and screening of a phage-displayed bicyclic-peptide library.

    CAS  PubMed  Google Scholar 

  42. Rentero Rebollo, I. & Heinis, C. Phage selection of bicyclic peptides. Methods 60, 46–54 (2013).

    CAS  PubMed  Google Scholar 

  43. Chen, S. et al. Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries. J. Am. Chem. Soc. 135, 6562–6569 (2013).

    CAS  PubMed  Google Scholar 

  44. Angelini, A. et al. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem. Biol. 7, 817–821 (2012).

    CAS  PubMed  Google Scholar 

  45. Bertoldo, D. et al. Phage selection of peptide macrocycles against β-catenin to interfere with Wnt signaling. ChemMedChem 11, 834–839 (2016).

    CAS  PubMed  Google Scholar 

  46. Josephson, K., Ricardo, A. & Szostak, J. W. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov. Today 19, 388–399 (2014).

    CAS  PubMed  Google Scholar 

  47. Barendt, P. A., Ng, D. T., McQuade, C. N. & Sarkar, C. A. Streamlined protocol for mRNA display. ACS Comb. Sci. 15, 77–81 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho, G., Keefe, A. D., Liu, R., Wilson, D. S. & Szostak, J. W. Constructing high complexity synthetic libraries of long ORFs using in vitro selection. J. Mol. Biol. 297, 309–319 (2000).

    CAS  PubMed  Google Scholar 

  49. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011). The paper describes the mRNA-display protocol in excellent detail.

    CAS  PubMed  Google Scholar 

  50. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    CAS  PubMed  Google Scholar 

  51. Josephson, K., Hartman, M. C. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    CAS  PubMed  Google Scholar 

  52. Heckler, T. G. et al. T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPheS. Biochemistry 23, 1468–1473 (1984).

    CAS  PubMed  Google Scholar 

  53. Ohuchi, M., Murakami, H. & Suga, H. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr. Opin. Chem. Biol. 11, 537–542 (2007).

    CAS  PubMed  Google Scholar 

  54. Passioura, T. & Suga, H. Flexizyme-mediated genetic reprogramming as a tool for noncanonical peptide synthesis and drug discovery. Chem. Eur. J. 19, 6530–6536 (2013).

    CAS  PubMed  Google Scholar 

  55. Katoh, T. & Suga, H. Ribosomal incorporation of consecutive beta-amino acids. J. Am. Chem. Soc. 140, 12159–12167 (2018).

    CAS  PubMed  Google Scholar 

  56. Passioura, T., Liu, W., Dunkelmann, D., Higuchi, T. & Suga, H. Display selection of exotic macrocyclic peptides expressed under a radically reprogrammed 23 amino acid genetic code. J. Am. Chem. Soc. 140, 11551–11555 (2018). This paper details the use of flexizymes with mRNA display for the generation of a cyclic-peptide library containing multiple non-natural amino acids.

    CAS  PubMed  Google Scholar 

  57. Goto, Y., Murakami, H. & Suga, H. Initiating translation with D-amino acids. RNA 14, 1390–1398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).

    CAS  PubMed  Google Scholar 

  59. Ito, K., Passioura, T. & Suga, H. Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides. Molecules 18, 3502–3528 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Guillen Schlippe, Y. V., Hartman, M. C., Josephson, K. & Szostak, J. W. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc. 134, 10469–10477 (2012).

    CAS  PubMed Central  Google Scholar 

  61. Millward, S. W., Takahashi, T. T. & Roberts, R. W. A general route for post-translational cyclization of mRNA display libraries. J. Am. Chem. Soc. 127, 14142–14143 (2005).

    CAS  PubMed  Google Scholar 

  62. Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).

    CAS  PubMed  Google Scholar 

  63. Seebeck, F. P., Ricardo, A. & Szostak, J. W. Artificial lantipeptides from in vitro translations. Chem. Commun. 47, 6141–6143 (2011).

    CAS  Google Scholar 

  64. Goto, Y., Iwasaki, K., Torikai, K., Murakami, H. & Suga, H. Ribosomal synthesis of dehydrobutyrine- and methyllanthionine-containing peptides. Chem. Commun. 23, 3149–3421 (2009).

    Google Scholar 

  65. Yamagishi, Y., Ashigai, H., Goto, Y., Murakami, H. & Suga, H. Ribosomal synthesis of cyclic peptides with a fluorogenic oxidative coupling reaction. ChemBioChem 10, 1469–1472 (2009).

    CAS  PubMed  Google Scholar 

  66. Takatsuji, R. et al. Ribosomal synthesis of backbone-cyclic peptides compatible with in vitro display. J. Am. Chem. Soc. 141, 2279–2287 (2019).

    CAS  PubMed  Google Scholar 

  67. McAllister, T. E. et al. Non-competitive cyclic peptides for targeting enzyme–substrate complexes. Chem. Sci. 9, 4569–4578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hipolito, C. J., Tanaka, Y., Katoh, T., Nureki, O. & Suga, H. A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter. Molecules 18, 10514–10530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496, 247–251 (2013).

    CAS  PubMed  Google Scholar 

  70. Hayashi, Y., Morimoto, J. & Suga, H. In vitro selection of anti-Akt2 thioether-macrocyclic peptides leading to isoform-selective inhibitors. ACS Chem. Biol. 7, 607–613 (2012).

    CAS  PubMed  Google Scholar 

  71. Morimoto, J., Hayashi, Y. & Suga, H. Discovery of macrocyclic peptides armed with a mechanism-based warhead: Isoform-selective inhibition of human deacetylase SIRT2. Angew. Chem. Int. Ed. 51, 3423–3427 (2012).

    CAS  Google Scholar 

  72. Yamagata, K. et al. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure 22, 345–352 (2014).

    CAS  PubMed  Google Scholar 

  73. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C. & Benkovic, S. J. Production of cyclic peptides and proteins in vivo. Proc. Natl Acad. Sci. USA 96, 13638–13643 (1999). This paper reports the use of SICLOPPS inteins for cyclic-peptide generation.

    CAS  PubMed  Google Scholar 

  74. Tavassoli, A. & Benkovic, S. J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2, 1126–1133 (2007).

    CAS  PubMed  Google Scholar 

  75. Chong, S., Williams, K. S., Wotkowicz, C. & Xu, M.-Q. Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem. 273, 10567–10577 (1998).

    CAS  PubMed  Google Scholar 

  76. Paulus, H. The chemical basis of protein splicing. Chem. Soc. Rev. 27, 375–386 (1998).

    CAS  Google Scholar 

  77. Scott, C. P., Abel-Santos, E., Jones, A. D. & Benkovic, S. J. Structural requirements for the biosynthesis of backbone cyclic peptide libraries. Chem. Biol. 8, 801–815 (2001).

    CAS  PubMed  Google Scholar 

  78. Townend, J. E. & Tavassoli, A. Traceless production of cyclic peptide libraries in E. coli. ACS Chem. Biol. 11, 1624–1630 (2016).

    CAS  PubMed  Google Scholar 

  79. Lennard, K. R. & Tavassoli, A. Peptides come round: using SICLOPPS libraries for early stage drug discovery. Chem. Eur. J. 20, 10608–10614 (2014).

    CAS  PubMed  Google Scholar 

  80. Horswill, A. R., Savinov, S. N. & Benkovic, S. J. A systematic method for identifying small-molecule modulators of protein–protein interactions. Proc. Natl Acad. Sci. USA 101, 15591–15596 (2004).

    CAS  PubMed  Google Scholar 

  81. Tavassoli, A. & Benkovic, S. J. Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization. Angew. Chem. Int. Ed. 44, 2760–2763 (2005).

    CAS  Google Scholar 

  82. Spurr, I. B. et al. Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization. ChemBioChem 13, 1628–1634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Asby, D. J. et al. AMPK activation via modulation of De Novo Purine biosynthesis with an inhibitor of ATIC homodimerization. Chem. Biol. 22, 838–848 (2015). This paper reports the in vivo activity of a small molecule derived from a cyclic peptide identified with SICLOPPS.

    CAS  PubMed  Google Scholar 

  84. Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013). This paper reports the use of SICLOPPS for the identification of the first HIF1-isoform-selective inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Asby, D. J., Cuda, F., Hoakwie, F., Miranda, E. & Tavassoli, A. HIF-1 promotes the expression of its α-subunit via an epigenetically regulated transactivation loop. Mol. BioSyst. 10, 2505–2508 (2014).

    CAS  PubMed  Google Scholar 

  86. Birts, C. N. et al. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem. Sci. 4, 3046–3057 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Male, A. L. et al. Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Tavassoli, A. et al. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag–TSG101 interaction. ACS Chem. Biol. 3, 757–764 (2008).

    CAS  PubMed  Google Scholar 

  89. Lennard, K. R., Gardner, R. M., Doigneaux, C., Castillo, F. & Tavassoli, A. Development of a cyclic peptide inhibitor of the p6/UEV protein–protein interaction. ACS Chem. Biol. 14, 1874–1878 (2019).

    CAS  PubMed  Google Scholar 

  90. Osher, E. L. et al. A genetically selected cyclic peptide inhibitor of BCL6 homodimerization. Bioorg. Med. Chem. 26, 3034–3038 (2018).

    CAS  PubMed  Google Scholar 

  91. Leitch, E. K. et al. Inhibition of low-density lipoprotein receptor degradation with a cyclic peptide that disrupts the homodimerization of IDOL E3 ubiquitin ligase. Chem. Sci. 9, 5957–5966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kjelstrup, S., Hansen, P. M. P., Thomsen, L. E., Hansen, P. R. & Løbner-Olesen, A. Cyclic peptide inhibitors of the β-sliding clamp in Staphylococcus aureus. PLOS ONE 8, e72273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheng, L. et al. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Sci. 16, 1535–1542 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kritzer, J. A. et al. Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models. Nat. Chem. Biol. 5, 655–663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Barreto, K. et al. A genetic screen for isolating “lariat” peptide inhibitors of protein function. Chem. Biol. 16, 1148–1157 (2009).

    CAS  PubMed  Google Scholar 

  96. Bharathikumar, V. M., Barreto, K., DeCoteau, J. F. & Geyer, C. R. Allosteric lariat peptide inhibitors of Abl kinase. ChemBioChem 14, 2119–2125 (2013).

    CAS  PubMed  Google Scholar 

  97. Kinsella, T. M. et al. Retrovirally delivered random cyclic peptide libraries yield inhibitors of interleukin-4 signaling in human B cells. J. Biol. Chem. 277, 37512–37518 (2002).

    CAS  PubMed  Google Scholar 

  98. Al Musaimi, O., Al Shaer, D., De la Torre, B. G. & Albericio, F. 2017 FDA peptide harvest. Pharmaceuticals 11, 42 (2018).

    PubMed Central  Google Scholar 

  99. Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).

    CAS  PubMed  Google Scholar 

  100. Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–464 (1996).

    CAS  PubMed  Google Scholar 

  101. Rader, C. & Barbas, C. F. III. Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508 (1997).

    CAS  PubMed  Google Scholar 

  102. Dougherty, P. G., Sahni, A. & Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev. 119, 10241–10287 (2019).

    CAS  PubMed  Google Scholar 

  103. Peraro, L. & Kritzer, J. A. Emerging methods and design principles for cell-penetrant peptides. Angew. Chem. Int. Ed. 57, 11868–11881 (2018).

    CAS  Google Scholar 

  104. Huang, Y., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.T. thanks Cancer Research UK (A20185) for support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ali Tavassoli.

Ethics declarations

Competing interests

A.T. and A.F. are employees and shareholders of Curve Therapeutics. C.S is a shareholder in Curve Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, C., Foster, A. & Tavassoli, A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 4, 90–101 (2020). https://doi.org/10.1038/s41570-019-0159-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0159-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing