• News
  • Science News
  • Bengaluru researchers develop superior, low-cost catalyst for water-splitting
This story is from May 9, 2019

Bengaluru researchers develop superior, low-cost catalyst for water-splitting

In a significant step towards large-scale hydrogen production, researchers at the Indian Institute of Science (IISc) have developed a low-cost catalyst that can speed up the splitting of water to produce hydrogen gas, a release issued here has claimed. ​
Bengaluru researchers develop superior, low-cost catalyst for water-splitting
BENGALURU: In a significant step towards large-scale hydrogen production, researchers at the Indian Institute of Science (IISc) have developed a low-cost catalyst that can speed up the splitting of water to produce hydrogen gas, a release issued here has claimed.
Splitting water using electricity is a widely-explored method to generate hydrogen gas, a long sought-after clean power source for fuel cells, batteries and zero-emission vehicles.

Scientists say that one of two major reactions involved in this process—the Oxygen Evolution Reaction—is notoriously slow, restricting overall efficiency. Therefore, researchers worldover have focused on developing better catalysts—materials that can speed up the reaction while remaining neutral—and the most efficient catalysts today are made from precious metals such as ruthenium and platinum, which are both expensive and rare.
H20

“An IISc team has now developed a low-cost catalyst by combining cobalt oxide with phosphate salts of sodium. The material cost is over two hundred times less expensive than the current state-of-the-art ruthenium dioxide catalyst, and the reaction rate is also faster,” says Ritambhara Gond, PhD student at the Materials Research Centre (MRC), IISc, who is the first author of the paper published in Angewandte Chemie.
This material, researchers say, can be very useful for large-scale applications in many devices such as metal-air batteries, fuel cells, et al. The study was led by Prabeer Barpanda, Assistant Professor at MRC, and carried out in collaboration with researchers at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR).

“When water is split using electricity in the presence of a catalyst, hydrogen atoms receive electrons from one electrode to form hydrogen gas, while at the opposite electrode, oxygen gas is released (Oxygen Evolution Reaction),” the release read.
Researchers have largely focused on speeding up the latter reaction. Catalysts made of platinum or ruthenium metals are the most efficient at this, as they waste the least energy, and reaction rates are higher. Their cost and scarcity, however, hinders their large-scale application.
“To develop low-cost alternatives, the IISc team turned to salts called metaphosphates, which have previously been tested for energy storage applications but not for catalysis. The researchers roasted sodium metaphosphate and cobalt oxide in the presence of argon gas in a furnace deprived of oxygen. This created a “sheet” of partially-burnt carbon onto which crystals made of cobalt oxide framed by sodium metaphosphate were spread out,” the release read.
The metaphosphates form a strong framework and hold these cobalt oxides intact, showing high stability after the catalytic activity. This would allow the catalyst to retain its activity over multiple cycles, leading to long-term durability. The presence of the carbon bed also boosted the catalyst’s conductivity, and therefore its efficiency, she says.
When compared with other catalysts, researchers found that the current density—a measure of how fast the reaction can happen—was higher for their catalyst than even ruthenium dioxide, indicating superior catalytic activity. “We are now planning to test this catalyst in metal-air batteries and water-splitting devices,” Gond says.
author
About the Author
Chethan Kumar

As a young democracy grows out of adolescence, its rolling out reels and reels of tales. If the first post office or a telephone connection paints one colour, the Stamp of a stock market scam or the ‘Jewel Thieves’ scandal paint yet another colour. If failure of a sounding rocket was a stepping stone, sending 104 satellites in one go was a podium. If farmer suicides are a bad climax, growing number of Unicorns are a grand entry. Chethan Kumar, Senior Assistant Editor, The Times of India, who alternates between the mundane goings-on of the hoi polloi and the wonder-filled worlds of scientists and scamsters, politicians and Jawans, feels: There’s always a story, one just has to find it.

End of Article
FOLLOW US ON SOCIAL MEDIA