Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Molecular spintronics using single-molecule magnets

Abstract

A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative examples of the peripheral functionalization of the outer organic shell of the [Mn12O12(CH3COO)16 (H2O)4] SMM (centre).
Figure 2: Transport experiments on SMMs.
Figure 3: Spin valves based on molecular magnets.
Figure 4: Multidot devices.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Awshalom, D. D. & Flatté, M. M. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  Google Scholar 

  3. Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  Google Scholar 

  4. Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  5. Ratner, M. A. (ed.) Special feature on molecular electronics. Proc. Natl Acad. Sci. 102, 8800–8837 (2005).

    Article  CAS  Google Scholar 

  6. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  7. Sanvito, S. & Rocha, A. R. Molecular spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci. 3, 624–642 (2006).

    Article  CAS  Google Scholar 

  8. Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Mater. Res. Soc. Bull. 25, 66–71 (2000).

    Article  CAS  Google Scholar 

  9. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  10. Carretta, S. et al. Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: Evidence from neutron spectroscopy. Phys. Rev. Lett. 98, 167401 (2007).

    Article  CAS  Google Scholar 

  11. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  12. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  13. Troiani, F. et al. Molecular engineering of antiferromagnetic rings for quantum computation. Phys. Rev. Lett. 94, 207208 (2005).

    Article  CAS  Google Scholar 

  14. Lehmann, J., Gaita-Ariño, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotech. 2, 312–317 (2007).

    Article  CAS  Google Scholar 

  15. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830 (1996).

    Article  CAS  Google Scholar 

  16. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  CAS  Google Scholar 

  17. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  CAS  Google Scholar 

  18. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  19. Jo, M.-H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano. Lett. 6, 2014–2020 (2006).

    Article  CAS  Google Scholar 

  20. Cornia, A. et al. Preparation of novel materials using SMMs. Struct. Bond. 122, 133–161 (2006).

    Article  CAS  Google Scholar 

  21. Fleury, B. et al. a new approach to grafting a monolayer of oriented Mn12 nanomagnets on silicon. Chem. Comm. 2020–2022 (2005).

  22. Naitabdi, A., Bucher, J.-P., Gerbier, Ph., Rabu, P. & Drillon, M. Self-assembly and magnetism of Mn12 nanomagnets on native and functionalized gold surfaces. Adv. Mater. 17, 1612–1616 (2005).

    Article  CAS  Google Scholar 

  23. Coronado, E. et al. Polycationic Mn12 single-molecule magnets as electron reservoirs with S>10 ground states. Angew. Chem. Int. Ed. 43, 6152–6156 (2004).

    Article  CAS  Google Scholar 

  24. Bogani, L. et al. Magneto-optical investigations of nanostructured materials based on single-molecule magnets monitor strong environmental effects. Adv. Mater. 19, 3906–3911 (2007).

    Article  CAS  Google Scholar 

  25. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: A new category of magnets at the single-molecular level. J. Phys. Chem. B 108, 11265–11271 (2004).

    Article  CAS  Google Scholar 

  26. Wahl, P. et al. Exchange interaction between single magnetic adatoms. Phys. Rev. Lett. 98, 056601 (2007).

    Article  CAS  Google Scholar 

  27. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1202 (2007).

    Article  CAS  Google Scholar 

  28. Kim, G.-H. & Kim, T.-S. Electronic transport in single molecule magnets on metallic surfaces. Phys Rev. Lett. 92, 137203 (2004).

    Article  Google Scholar 

  29. Park, H., Kim, A. K. L., Alivisatos, A. P., Park J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  30. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha S. & Vandersypen L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  31. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Series E 345, Kluwer, 1997).

    Book  Google Scholar 

  32. Chakov, N. E., Soler, M., Wernsdorfer, W., Asbboud, K. A. & Christou, G. Single-molecule magnets: Structural characterization, magnetic properties, and 19F NMR spectroscopy of a Mn12 family spanning three oxidation levels. Inorg. Chem. 44, 5304–5321 (2005).

    Article  CAS  Google Scholar 

  33. Romeike, C., Wegewijs, M. R. & Schoeller, H. Spin quantum tunneling in single molecule magnets: Fingerprints in transport spectroscopy of current and noise. Phys. Rev. Lett. 96, 196805 (2006).

    Article  CAS  Google Scholar 

  34. Romeike, C. et al. Charge-switchable molecular nanomagnet and spin-blockade tunneling. Phys Rev. B 75, 064404 (2007).

    Article  Google Scholar 

  35. Erste, F. & Timm, C. Cotunneling and nonequilibrium magnetization in magnetic molecular monolayers. Phys Rev. B 75, 195341 (2007).

    Article  Google Scholar 

  36. Timm, C. Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field. Phys. Rev. B 76, 014421 (2007).

    Article  Google Scholar 

  37. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  CAS  Google Scholar 

  38. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    Article  CAS  Google Scholar 

  39. van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).

    Article  CAS  Google Scholar 

  40. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  CAS  Google Scholar 

  41. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  42. Liang, W., Shores, M. P., Bockrath, M. & Long, J. R. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  43. Aromì, G. & Brechin, E. K. Synthesis of 3d metallic single-molecule magnets. Struct. Bond. 122, 1–67 (2006).

    Article  Google Scholar 

  44. Romeike, C., Wegewijs, M. R., Hofstetter W. & Schoeller, H. Kondo-transport spectroscopy of single molecule magnets. Phys. Rev. Lett. 97, 206601 (2006).

    Article  CAS  Google Scholar 

  45. Romeike, C., Wegewijs, M. R., Hofstetter, W. & Schoeller, H. Quantum-tunneling-induced kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006).

    Article  CAS  Google Scholar 

  46. Leuenberger, M. N. & Mucciolo, E. R. Berry-phase oscillations of the Kondo effect in single-molecule magnets. Phys. Rev. Lett. 97, 126601 (2006).

    Article  Google Scholar 

  47. Waldron, D., Haney, P., Larade, B., MacDonald, A. & Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006).

    Article  Google Scholar 

  48. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  49. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  CAS  Google Scholar 

  50. Hueso L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  51. Liu, R., Ke, S.-H., Baranger, H. U. & Yang, W. Negative differential resistance and hysteresis through an organometallic molecule from molecular-level crossing. J. Am. Chem. Soc. 128, 6274–6275 (2006).

    Article  CAS  Google Scholar 

  52. Timm, C. & Elste, F. Spin amplification, reading, and writing in transport through anisotropic magnetic molecules. Phys. Rev. B 73, 235304 (2006).

    Article  Google Scholar 

  53. Elste, F. & Timm, C. Transport through anisotropic magnetic molecules with partially ferromagnetic leads: Spin-charge conversion and negative differential conductance. Phys. Rev. B 73, 235305 (2006).

    Article  Google Scholar 

  54. Misiorny, M. & Barnaś, J. Magnetic switching of a single molecular magnet due to spin-polarized current. Phys. Rev. B 75, 134425 (2007).

    Article  Google Scholar 

  55. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).

    Article  CAS  Google Scholar 

  56. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N. & Christou G. Exchange-biased quantum tunneling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

    Article  Google Scholar 

  57. Affronte, M. et al. Linking rings through diamines and clusters: Exploring synthetic methods for making magnetic quantum gates. Angew. Chem. Int. Ed. 44, 6496–6490 (2005).

    Article  CAS  Google Scholar 

  58. Ouyang, M. & Awshalom, D. Coherent Spin-transfer between molecularly bridged quantum dots. Science 301, 1074–1076 (2003).

    Article  CAS  Google Scholar 

  59. Merrifield, B. Solid Phase Synthesis Available at <http://nobelprize.org/nobel_prizes/chemistry/laureates/1984/merrifield- lecture.html>.

  60. Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53–59 (2006).

    Article  CAS  Google Scholar 

  61. Shimada, H., Ono, K & Otuka, Y. Driving the single-electron device with a magnetic field. J. Appl. Phys. 93, 8259–8264 (2003).

    Article  CAS  Google Scholar 

  62. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature 445, 414–418 (2007).

    Article  CAS  Google Scholar 

  63. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: Bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Ed. 44, 2931–2935 (2005).

    Article  CAS  Google Scholar 

  64. Kasumov, A. et al. Proximity effect in a superconductor-metallofullerene-superconductor molecular junction. Phys. Rev. B 72, 033414 (2005).

    Article  Google Scholar 

  65. Wernsdorfer, W., Murugesu, M. & Christou, G. Resonant tunneling in truly axial symmetry Mn12 single-molecule magnets: Sharp crossover between thermally assisted and pure quantum tunneling. Phys. Rev. Lett. 96, 057208 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially financed by ANR-PNANO, Contract MolSpintronics No. ANR-06-NANO-27 and by EC-RTN QUEMOLNA Contract No. MRTN-CT-2003-504880. L.B. acknowledges E.U. support through the EIF-041565-'MoST' Marie Curie fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogani, L., Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater 7, 179–186 (2008). https://doi.org/10.1038/nmat2133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing