Skip to main content Accessibility help
×
  • Cited by 104
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2006
Online ISBN:
9780511754869

Book description

Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems.

Reviews

'… would be a valuable addition to the library of any research lab at the physical end of biochemistry. … The language used in the book is extremely clear, and a mathematical approach is combined with clear links to real biochemistry …'

Source: Chemistry world

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Abbott, A. J. and Nelsestuen, G. L. (1988). The collisional limit: an important consideration for membrane-associated enzymes and receptors. Faseb J., 2, 2858–2866.
Accardi, A. and Miller, C. (2004). Secondary active transport mediated by a prokaryotic homologue of ClC Cl− channels. Nature, 427, 803–807.
Adam, G. and Delbrück, M. (1968). Reduction of dimensionality in biological diffusion processes. In Structural Chemistry and Molecular Biology, ed. Rich, A. and Davidson, N.. San Francisco: Freeman, pp. 198–215.
Adams, D. J., Dwyer, T. M. and Hille, B. (1980). The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol., 75, 493–510.
Adams, S. A. and DeFelice, L. J. (2002). Flux coupling in the human serotonin transporter. Biophys. J., 83, 3268–3282.
Ahern, C. A. and Horn, R. (2004). Stirring up controversy with a voltage sensor paddle. TINS, 27, 303–307.
Aicken, C. C. (1990). Chloride transport across the sarcolemma of vertebrate smooth and skeletal muscle. In Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells, ed. Alvarez-Leefmans, F. J. and Russell, J. M.. New York: Plenum Press, pp. 209–249.
Aidley, D. J. (1978). The Physiology of Excitable Cells. Cambridge: Cambridge University Press.
Alber, T., Dao-pin, S., Wilson, K., Wozniak, J. A., Cook, S. P. and Matthews, B. W. (1987). Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature, 330, 41–46.
Albery, W. J. and Knowles, J. R. (1976). Evolution of enzyme function and the development of catalytic efficiency. Biochemistry, 15, 5631–5640.
Aldrich, R. W., Getting, P. A. and Thompson, S. H. (1979). Mechanism of frequency-dependent broadening of molluscan neurone soma spikes. J. Physiol., 291, 531–544.
Allen, T. W., Andersen, O. S. and Roux, B. (2004). Energetics of ion conduction through the gramicidin channel. Proc. Natl Acad. Sci., 101, 117–122.
Almers, W. and McCleskey, E. W. (1984). The non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol., 353, 585–608.
Andersen, O. S. (1983). Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J., 41, 119–133.
Anderson, C. R. and Stevens, C. F. (1973). Voltage-clamp analysis of acetylcholine produced end plate current fluctuations at frog neuromuscular junction. J. Physiol., 235, 655–691.
Antzelevitch, C. (2001). Basic mechanisms of reentrant arrhythmias. Curr. Opin. Cardiol., 16, 1–7.
Åqvist, J. and Luzhkov, V. (2000). Ion permeation mechanism of the potassium channel. Nature, 404, 881–884.
Ashcroft, F. M. (2000). Ion Channels and Disease. San Diego: Academic Press.
Aurora, R., Creamer, T. P., Srinivasan, R. and Rose, G. D. (1997). Local interactions in protein folding: lessons from the α-helix. J. Biol. Chem., 272, 1413–1416.
Aveyard, R. and Haydon, D. A. (1973). An Introduction to the Principles of Surface Chemistry. Cambridge: Cambridge University Press, p. 231.
Axe, D. D., Foster, N. W. and Fersht, A. R. (1996). Active barnase variants with completely random hydrophobic cores. Proc. Natl Acad. Sci., 93, 5590–5594.
Baldwin, R. L. (1996). How Hofmeister ion interactions affect protein stability. Biophys. J., 71, 2056–2063.
Barrett, J. N. and Crill, W. E. (1974). Specific membrane properties of cat motoneurons. J. Physiol., 239, 301–324.
Bashford, C. L. and Pasternak, C. A. (1986). Plasma membrane potential of some animal cells is generated by ion pumping, not by gradients. Trends Biochem. Sci., 11, 113–116.
Bass, R. B., Strop, P., Barclay, M. and Rees, D. C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 298, 1582–1587.
Bedzek, M. J., Bommarito, G. M., Caffrey, M. and Penner, T. L. (1990). Diffuse-double layer at a membrane-aqueous interface measured with X-ray standing waves. Science, 248, 52–56.
Beece, D., Eisenstein, L., Frauenfelder, H.et al. (1980). Solvent viscosity and protein dynamics. Biochemistry, 19, 5147–5157.
Ben-Shaul, A., Ben-Tal, N. and Honig, B. (1996). Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys. J., 71, 130–137.
Benedek, G. B. and Villars, F. M. H. (2000). Physics with Illustrative Examples from Medicine and Biology. New York: Springer-Verlag.
Benz, R. and Läuger, P. (1977). Transport kinetics of dipicrylamine through lipid bilayer membranes. Biochem. Biophys. Acta, 468, 245–258.
Berezin, I. V., Kazanskaya, N. F. and Klyosov, A. A. (1971). Determination of the individual rate constants of α-chymotrypsin-catalyzed hydrolysis with the added nucleophilic agent 1,4-butanediol. FEBS Lett., 15, 121–124.
Berg, H. C. (1983). Random Walks in Biology. Princeton: Princeton University Press. [Cited in Chapters 6 and 8. This is an accessible and clear introduction to Brownian motion and diffusion with good biological examples.]
Berg, H. C. and Purcell, E. M. (1977). Physics of chemoreception. Biophys. J., 20, 193–219. [Cited in Chapter 8. A seminal paper that introduces many important concepts in diffusion-limited encounters.]
Berg, O. G. and Hippel, P. H. (1985). Diffusion-controlled macromolecular interactions. Ann. Rev. Biophys. Biophys. Chem., 14, 131–160.
Berniche, S. and Roux, B. (2000). Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J., 78, 2900–2917.
Betz, S. F., Bryson, J. W. and DeGrado, W. F. (1995). Native-like and structurally characterized designed α-helical bundles. Curr. Opin. Struct. Biol., 5, 457–463.
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiol. Rev., 80, 555–592.
Blacklow, S. C., Raines, R. T., Lim, W. A., Zamore, P. D. and Knowles, J. R. (1988). Triosephosphate isomerase catalysis is diffusion controlled. Biochemistry, 27, 1158–1167.
Blangy, D., Buc, H. and Monod, J. (1968). Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol., 31, 13–35. Cited in Chapter 5. This provides an example of how the MWC theory can synthesize a broad range of observations.]
Bloomfield, S. A., Hamos, J. E. and Sherman, S. M. (1987). Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J. Physiol., 383, 653–692.
Bloomfield, V. A., Crothers, D. M. and Tinoco, I. (1974). The Physical Chemistry of Nucleic Acids. New York: Harper and Row, Publishers, Inc.
Boyle, P. J. and Conway, E. J. (1941). Potassium accumulation in muscle and associated changes. J. Physiol., 100, 1–63.
Breslow, E. and Gurd, F. R. N. (1962). Reactivity of sperm whale metmyoglobin towards hydrogen ions and p-nitrophenyl acetate. J. Biol. Chem., 237, 371–381.
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4, 187–217.
Brouwer, A. C. and Kirsch, J. F. (1982). Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry, 21, 1302–1307.
Bruice, T. C. (1970). Proximity effects and enzyme catalysis. In The Enzymes II, ed. Boyer, P. D.. New York: Academic Press, pp. 217–279.
Bryant, R. G. (1996). The dynamics of water–protein interactions. Ann. Rev. Biophys. Biomol. Struct., 25, 29–53.
Cai, M. and Jordan, P. C. (1990). How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel. Biophys. J., 57, 883–891.
Camacho, C. J. and Thirumalai, D. (1993). Minimum energy compact structures of random sequences of heteropolymers. Phys. Rev. Lett., 71, 2505–2508.
Cantor, P. R. and Schimmel, P. R. (1980). Biophysical Chemistry. San Francisco: W. H. Freeman and Co. [Cited in Chapter 3. This thorough three-volume set has excellent chapters on conformational statistics of polymers and the helix–coil transition.]
Cardinale, G. J. and Abeles, R. H. (1968). Purification and mechanism of action of proline racemase. Biochemistry, 7, 3970–3978.
Carra, J. H., Murphy, E. C. and Privalov, P. L. (1996). Thermodynamic effects of mutations on the denaturation of T4 lysozyme. Biophys. J., 71, 1994–2001.
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford: Oxford University Press.
Cassidy, C. S., Lin, J. and Frey, P. A. (1997). A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond. Biochemistry, 36, 4576–4584.
Caterall, W. A., Chandy, G. K. and Gutman, G. A. (eds.) (2002). The IUPHAR Compendium of Voltage-Gated Ion Channels. Leeds: IUPHAR Media.
Chan, H. S. and Dill, K. A. (1991). Polymer principles in protein structure and stability. Ann. Rev. Biophys. Biophys. Chem., 20, 447–490. [Cited in Chapter 3. This article draws many interesting connections between basic polymer theory and protein structure.]
Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 1–89. [Cited in Chapter 6. This is a clear account of Brownian motion, and is also included in an excellent selection of related papers, edited by N. Wax and published by Dover.]
Changeux, J. P. (1984). Acetylcholine receptor: an allosteric protein. Science, 225, 1335–1345.
Chapman, M. L., Donger, H. M. A. and Donger, A. M. J. (1997). Activation-dependent subconductance levels in the drk 1 K channel suggest a subunit basis for ion permeation and gating. Biophys. J., 72, 708–719.
Checover, S., Nachliel, E., Dencher, N. A. and Gutman, M. (1997). Mechanism of proton entry into the cytoplasmic section of the proton-conducting channel of bacteriorhodopsin. Biochemistry, 36, 13 919–13 928.
Chen, Y. -D. and Hill, T. L. (1973). Fluctuations and noise in kinetic systems: Applications to K+ channels in the squid axon. Biophys. J., 13, 1276–1295.
Chung, S. -H., Allen, T. W., Hoyles, M. and Kuyucak, S. (1999). Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J., 77, 2517–2533. [Cited in Chapter 14. A lucid treatment of K+ channel permeation with modern computational methods.]
Chung, S. -H., Allen, T. W. and Kuyucak, S. (2002). Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J., 82, 628–645.
Cleland, W. W. (1970). Steady state kinetics. In The Enzymes, ed. Boyer, P. D.. New York: Academic Press, Vol. ii, pp. 1–65.
Cleland, W. W., Frey, P. A. and Gerlt, J. A. (1998). The low barrier hydrogen bond in enzymatic catalysis. J. Biol. Chem., 273, 25 529–25 532.
Clements, J. D. and Redman, S. J. (1989). Cable properties of cat spinal motoneurons measured by combining voltage clamp, current clamp and intracellular staining. J. Physiol., 409, 63–87.
Cohn, E. J. and Edsall, J. T. (1943). Proteins, Amino Acids and Peptides as Ions and Dipolar Ions. New York: Reinhold Publishing Corporation.
Colquhoun, D. and Hawkes, A. G. (1982). On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Trans. R. Soc. Lond., B300, 1–59.
Colquhoun, D. and Hawkes, A. G.(1995). A Q-matrix cookbook. In Single-Channel Recording, ed. Sakmann, B. and Neher, E.. New York: Plenum, pp. 589–633.
Connelly, P., Ghosaini, L., Hu, C. -Q., Kitamura, S., Tanaka, A. and Sturtevant, J. M. (1991). A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme. Biochem., 30, 1887–1891.
Connor, J. A. and Stevens, C. F. (1971a). Inward and delayed outward membrane current in isolated neural somata under voltage clamp. J. Physiol., 213, 1–19.
Connor, J. A. and Stevens, C. F.(1971b). Prediction of repetitive firing behavior from voltage clamp data on an isolated neurone soma. J. Physiol., 213, 31–53.
Cooper, A. (1976). Thermodynamic fluctuations in protein molecules. Proc. Natl Acad. Sci., 73, 2740–2741.
Coronado, R., Rosenberg, R. L. and Miller, C. (1980). Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J. Gen. Physiol., 76, 425–446.
Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. New York: Chapman and Hall.
Crank, J. (1975). The Mathematics of Diffusion. Oxford: Oxford University Press.
Crothers, D. M., Drak, J., Kahn, J. D. and Levene, S. D. (1992). DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol., 212, 3–29.
Cubero, E., Luque, F. J. and Orozco, M. (1998). Is polarization important in cation–π interactions?Proc. Natl Acad. Sci., 95, 5976–5980.
Curtis, H. J. and Cole, K. S. (1942). Membrane resting and action potentials from the squid giant axon. J. Cell. Comp. Physiol., 19, 135–144.
Daggett, V. and Fersht, A. R. (2003). Is there a unifying mechanism for protein folding? TIBS, 28, 18–25.
DeFelice, L. J. (1981). Introduction to Membrane Noise. New York: Plenum Press.
DeFelice, L. J.(2004). Transporter structure and mechanism. TINS, 27, 352–359.
Gennes, P. G. (1972). Exponents for the excluded volume problem as derived by the Wilson method. Phys. Letts, 38A, 339–340.
Lean, A., Stadel, J. M. and Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled b-adrenergic receptor. J. Biol. Chem., 255, 7108–7117.
Schutter, E. (1986). Alternative equations for the molluscan ion currents described by Connor and Stevens. Brain Res., 382, 134–138.
Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155. [Cited in Chapter 2. This is an excellent review with an emphasis on the hydrophobic effect.]
Dill, D. A., Bromberg, S., Yue, K.et al. (1995). Principles of protein folding – a perspective from simple exact models. Protein Sci., 4, 561–602.
Dinner, A. R. and Karplus, M. (2001). Comment on the communication “The key to solving the protein-folding problem lies in an accurate description of the denatured state” by van Gunsteren et al. Angew. Chem. Int. Ed., 40, 4615–4616.
Doyle, D. A., Cabral, J. M., Pfuetzner, R. A.et al. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69–77. [Cited in Chapter 14. The first crystal structure of a selective channel and a major advance.]
Dunitz, J. D. (1994). The entropic cost of bound water in crystals and biomolecules. Science, 264, 670. [Cited in Chapter 4. This is a lucid account of the thermodynamics of water association with proteins.]
Eaton, W. A., Henry, E. R. and Hofrichter, J. (1991). Application of linear free energy relations to protein conformational changes: the quaternary structural change of hemoglobin. Proc. Natl Acad. Sci., 88, 4472–4475.
Edwards, S., Corry, B., Kuyucak, S. and Chung, S. -H. (2002). Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J., 83, 1348–1360.
Ehrenstein, G., Blumenthal, R., Latorre, R. and Lecar, H. (1974). Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. J. Gen. Physiol., 63, 707–721.
Eigen, M. and Hammes, G. G. (1963). Elementary steps in enzyme reactions. Adv. Enyzmol., 25, 1–38.
Einstein, A. (1956). Investigations on the Theory of Brownian Movement. New York: Dover. [Cited in Chapter 6. This small book contains five papers published by Einstein from 1905 to 1908. This work is timeless and still worthy of careful study by students of biophysics.]
Eisenman, G. and Horn, R. (1983). Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membrane Biol., 76, 197–225.
Elson, E. L. and Magde, D. (1974). Fluorescence correlation spectroscopy: I. Conceptual basis. Biopolymers, 13, 1–27.
Falke, J. J., Drake, S. K., Hazard, A. L. and Peersen, O. B. (1994). Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys., 27, 219–290.
Fersht, A. R. (1987). The hydrogen bond in molecular recognition. Trends Biochem. Sci., 12, 301–304.
Fersht, A. R.(1998). Structure and Mechanism in Protein Science. New York: Freeman. [Cited in Chapters 7 and 10. This is an excellent resource for kinetics and enzyme mechanisms.]
Fersht, A. R., Shi, J. -P., Knill-Jones, J.et al. (1985). Hydrogen bonding and biological specificity analysed by protein engineering. Nature, 314, 235–238.
Fersht, A. R., Itzhaki, L. S., El Masry, N. F., Matthews, J. M. and Otzen, D. E. (1994). Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc. Natl Acad. Sci., 91, 10 426–10 429. [Cited in Chapter 7. This provides a very nice example of how to use Φ plots to address the mechanism of protein unfolding.]
Fielder, E. M., Roberts, P. B., Bray, R. C.et al. (1974). The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Biochem. J., 139, 49–60.
Finkel, A. S. and Redman, S. J. (1983). The synaptic current evoked in cat spinal motoneurons by impulse in single group Ia axons. J. Physiol., 342, 615–632.
Finkelstein, A. (1987). Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. New York: Wiley-Interscience.
Finkelstein, A. and Andersen, O. S. (1981). The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membrane Biol., 59, 155–171.
Finkelstein, A. V. and Janin, J. (1989). The price of lost freedom: entropy of bimolecular complex formation. Protein Engineering, 3, 1–3.
Flory, P. J. (1969). Statistical Mechanics of Chain Molecules. New York: Interscience Publishers.
Fredkin, D. R., Montal, M. and Rice, J. A. (1985). Identification of aggregated Markovian models: application to the nicotinic acetylcholine receptor. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, ed. Carn, L. M. and Olshen, R. A.. Wadsworth, Vol. 1, pp. 269–289.
Gallivan, J. P. and Dougherty, D. A. (1999). Cation–π interactions in structural biology. Proc. Natl Acad. Sci., 96, 9459–9464.
Gallivan, J. P. and Dougherty, D. A.(2000). A computational study of cation-π interactions vs salt bridges in aqueous media: Implications for protein engineering. J. Amer. Chem. Soc., 122, 870–874.
Garofoli, S. and Jordan, P. C. (2003). Modeling permeation energetics in the KcsA potassium channel. Biophys. J., 84, 2814–2830.
Gavish, B. and Werber, M. M. (1979). Viscosity-dependent structural fluctuations in enzyme catalysis. Biochemistry, 18, 1269–1275.
Gentet, L. J., Stuart, G. J. and Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophys. J., 79, 314–320.
Gilson, M. K., Given, J. A., Bush, B. L. and McCammon, J. A. (1997). The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J., 72, 1047–1069. [Cited in Chapter 4. This is an excellent review of the statistical mechanics of molecular associations.]
Goldman, L. and Albus, J. S. (1968). Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys. J., 8, 596–607.
Goldstein, S. S. and Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophys. J., 14, 731–757.
Goychuk, I. and Hänggi, P. (2002). Ion channel gating: a first-passage time analysis of the Kramers type. Proc. Natl Acad. Sci., 99, 3552–3556.
Green, W. N., Weiss, L. B. and Andersen, O. S. (1987). Batrachotoxin-modified sodium channels in planar lipid bilayers. J. Gen. Physiol., 89, 841–872.
Griko, Y. V. and Privalov, P. L. (1992). Calorimetric study of the heat and cold denaturation of beta-lactoglobulin. Biochemistry, 31, 8810–8815.
Grosman, C. (2003). Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state of the acetylcholine-receptor channels. Biochemistry, 42 (50), 14 977–14 987.
Grosman, C., Zhou, M. and Auerbach, A. (2000). Mapping the conformational wave of acetylcholine receptor channel gating. Nature, 403, 773–776. [Cited in Chapter 7. This is an important advance mapping the gating transition of an ion channel and an excellent illustration of the use of Φ plots in biophysics.]
Gurney, R. W. (1953). Ionic Processes in Solution. New York: McGraw-Hill.
Gutman, M. and Nachliel, E. (1997). Time-resolved dynamics of proton transfer in proteinous systems. Ann. Rev. Phys. Chem., 48, 329–356.
Hagen, S. J. and Eaton, W. A. (1996). Nonexponential structural relaxations in proteins. J. Chem. Phys., 104, 3395–3398.
Hall, J. E., Mead, C. A. and Szabo, G. (1973). A barrier model for current flow in lipid bilayer membranes. J. Membr. Biol., 11, 75–97. [Cited in Chapter 14. This is an early example of how barriers shape the current–voltage behavior of a membrane.]
Hammes, G. G. (1978). Principles of Chemical Kinetics. New York: Academic Press.
Han, W. -G., Jalkanen, K. J., Elstner, M. and Suhai, S. (1998). Theoretical study of aqueous N-acetyl-L-alanine N′-methylamine: structures and Raman, VCD, and ROA spectra. J. Phys. Chem. B, 102, 2487–2602.
Hänggi, P., Talkner, P. and Borkovec, M. (1990). Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62, 251–341. [Cited in Chapter 7. This is an excellent review of modern approaches to rate theory.]
Hardy, L. W. and Kirsch, J. F. (1984). Diffusion-limited components of reactions catalyzed by bacillus cereus b-lactanase I. Biochemistry, 23, 1275–1282.
Hecht, S., Schlaer, S. and Pirenne, M. (1942). Energy, quanta, and vision. J. Gen. Physiol., 25, 819–840.
Hedstrom, L., Perona, J. J. and Rutter, W. J. (1994). Converting trypsin to chymotrypsin: Residue 172 is a substrate specificity determinant. Biochemistry, 33, 8757–8763.
Hess, P. and Tsien, R. W. (1984). Mechanism of ion permeation through calcium channels. Nature, 309, 453–456.
Hestrin, S., Nicoll, R. A., Perkel, D. J. and Sah, P. (1990). Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol., 422, 203–225.
Hill, T. L. (1960). An Introduction to Statistical Thermodynamics. Reading: Addison-Wesley. [This is highly recommended as a resource for statistical mechanics.]
Hille, B. (1977). Ionic basis of resting and action potentials. In Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, ed. Brookhart, J. M. and Mountcastle, V. B.. Bethesda: American Physiological Society, pp. 99–136.
Hille, B.(1991). Ion Channels of Excitable Membranes. Sunderland: Sinauer Associates.
Hille, B. and Schwarz, W. (1978). Potassium channels as multi-ion single-file pores. J. Gen. Physiol., 72, 409–442. [Cited in Chapter 14. A full treatment of single-file models and an excellent summary of their basic properties.]
Hines, M. L. and Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.
Hodgkin, A. L. (1964). The Conduction of Nervous Impulse. Springfield, IL: Charles Thomas.
Hodgkin, A. L. and Horowicz, P. (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol., 148, 127–160.
Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544. [Cited in Chapter 16. This is the culminating paper in the seminal series on membrane excitability.]
Hodgkin, A. L. and Keynes, R. D. (1955). The potassium permeability of a giant nerve fibre. J. Physiol., 128, 61–88. [Cited in Chapter 14. This is the classical development of the single-file theory of permeation.]
Hodgkin, A. L. and Rushton, W. A. H. (1946). The electrical constants of a crustacean nerve fiber. Proc. R. Soc. Lond., B133, 444–479.
Hodgkin, A. L., Huxley, A. F. and Katz, B. (1952). Measurement of current voltage relations in the membrane of the giant axon of Loligo. J. Physiol., 116, 424–448.
Hol, W. G. J., Duijnen, P. T. and Berendsen, H. J. C. (1978). The α-helix dipole and the properties of proteins. Nature, 273, 443–446.
Horn, R. and Lange, K. (1983). Estimating kinetic constants from single channel data. Biophys. J., 43, 207–223.
Horn, R. and Vandenberg, C. A. (1984). Statistical properties of single sodium channels. J. Gen. Physiol., 84, 505–534.
Huxley, A. F. and Stämpfli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol., 108, 315–339.
Imoto, K., Busch, C., Sakmann, B.et al. (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature, 335, 645–648.
Itzhaki, L. S., Otzen, D. E. and Fersht, A. R. (1995). The structure of the transition state for protein folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation condensation mechanism for protein folding. J. Mol. Biol., 254, 260–288.
Jack, J. J. B. and Redman, S. J. (1971). An electrical description of the motoneuron and its application to the analysis of synaptic potentials. J. Physiol., 215, 321–352.
Jack, J. J. B., Noble, D. and Tsien, R. W. (1983). Electric Current Flow in Excitable Cells. Oxford: Oxford University Press. [Cited in Chapters 15 and 16. This is a comprehensive textbook that covers cable theory and excitability very well.]
Jackson, J. D. (1975). Classical Electrodynamics. New York: John Wiley & Sons.
Jackson, M. B. (1985). The stochastic behavior of a many channel membrane system. Biophys. J., 47, 129–137.
Jackson, M. B.(1992). Cable analysis with the whole-cell patch clamp: theory and experiment. Biophys. J., 61, 756–766.
Jackson, M. B.(1993a). Passive current flow and morphology in the terminal arborizations of the posterior pituitary. J. Neurophysiol., 69, 692–702.
Jackson, M. B.(1993b). Binding specificity of receptor chimeras revisited. Biophys. J., 63, 1443–1444.
Jackson, M. B.(1993c). On the time scale and time course of protein conformational changes. J. Chem. Phys., 99, 7253–7259.
Jackson, M. B.(1994). Single channel currents in the nicotinic receptor: A direct demonstration of allosteric transitions. TIBS, 19, 396–399.
Jackson, M. B.(1997a). Adding up the energies in the acetylcholine receptor channel: relevance to allosteric theory. In The Nicotinic Acetylcholine Receptor: Current Views and Future Trends, ed. Barrantes, F.. Austin: Landes Bioscience, pp. 61–84.
Jackson, M. B.(1997b). Inversion of Markov processes to determine rate constants from single channel data. Biophys. J., 73, 1382–1394.
Jackson, M. B.(1998). Allosteric mechanisms in the activation of ligand-gated channels. Biophysics Textbook of the Biophysical Society. Rockville: Biophysical Society. [Cited in Chapter 5. A discussion of allosteric mechanisms using ligand-gated channels to illustrate important concepts.]
Jackson, M. B. and Zhang, S. J. (1995). Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. J. Physiol., 483(3), 597–611.
Jackson, M. B., Wong, B. M., Morris, C. E., Lecar, H. and Christian, C. N. (1983). Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys. J., 42, 109–114.
Jackson, M. B., Konnerth, A. and Augustine, G. J. (1991). Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc. Natl Acad. Sci., 88, 380–384.
Jacobson, K., Ishihara, A. and Inman, R. (1987). Lateral diffusion of proteins in membranes. Ann. Rev. Physiol., 49, 163–175.
Jeffrey, G. A. and Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer–Verlag.
Jencks, W. P. (1975). Binding energy, specificity, and enzyme catalysis: the Circe effect. Adv. Enzymol., 43, 219–410.
Jencks, W. P. and Carriuolo, J. (1961). General base catalysis of ester hydrolysis. Journal of the American Chemical Society, 83, 1743–1750.
Jentsch, T. J., Stein, V., Weinreich, F. and Zdebik, A. A. (2002). Molecular structure and physiological function of chloride channels. Physiol. Rev., 82, 503–568.
Jones, S. W. (1989). On the resting potential of isolated frog sympathetic neurons. Neuron, 3, 153–161.
Jordan, P. C. (1990). Ion-water and ion-polypeptide interactions in a gramicidin-like channel. A molecular dynamics study. Biophys. J., 58, 1133–1156.
Jordan, P. C., Bacquet, R. J., McCammon, A. J. and Tran, P. (1989). How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys. J., 55, 1041–1052.
Kallenbach, N. (2001). Breaking open a protein barrel. Proc. Natl Acad. Sci., 98, 2958–2960. [Cited in Chapter 2. This presents a clear presentation of the oil-droplet versus jigsaw puzzle pictures of a protein interior.]
Kao, J. P. Y. and Tsien, R. Y. (1988). Ca2 + binding kinetics of fura-2 and azo-1 from temperature jump relaxation measurements. Biophys. J., 53, 635–639.
Karplus, M. (2002). Molecular dynamics simulations of biomolecules. Acc. Chem. Res., 35, 321–323. [Cited in Chapter 2. This is the editorial for a special issue that covers a wide range of applications.]
Katz, B. (1966). Nerve, Muscle, and Synapse. New York: McGraw-Hill.
Kaya, H. and Chan, H. S. (2000). Polymer principles of protein calorimetric two-state cooperativity. Proteins: Structure, Function, and Genetics, 40, 637–661.
Keizer, J. (1987). Diffusion effects on rapid bimolecular chemical reactions. Chem. Rev., 87, 167–180.
Kell, M. J. and DeFelice, L. J. (1988). Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance. J. Membrane Biol., 102, 1–10.
Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L. and Bustamante, C. (1997). Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science, 276, 1112–1116.
Khanin, R., Parnas, H. and Segel, L. (1994). Diffusion cannot govern the discharge of neurotransmitter in fast synapses. Biophys. J., 67, 966–972.
Kijima, S. and Kijima, H. (1987). Statistical analysis of channel current from a membrane patch I. Some stochastic properties of ion channels or molecular systems at equilibrium. J. Theor. Biol., 128, 423–434.
Kittel, C. (1958). Elementary Statistical Physics. New York: John Wiley & Sons.
Kolinski, A., Godzik, A. and Skolnick, J. (1993). A general method for the prediction of the three dimensional structure and folding pathway of globular proteins: Application to designed helical proteins. J. Chem. Phys., 98, 7420–7433.
Kolinski, A., Galazka, W. and Skolnick, J. (1996). On the origin of the co-operativity of protein folding: implications from model simulations. Proteins: Structure, Function, and Genetics, 26, 271–287.
Koshland, D. E., Nemethy, G. and Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5, 365–384.
Kramers, H. A. (1940). Brownian motion in a field of force. Physica, 7, 284–304.
Kuyucak, S., Andersen, O. S. and Chung, S. -H. (2001). Models of permeation in ion channels. Reports of Progress in Physics, 64, 1427–1472.
Latorre, R., Labarca, P. and Naranjo, D. (1992). Surface charge effects on ion conduction in ion channels. In Ion Channels (Methods in Enzymology), ed. L. Iverson and B. Rudy, vol. 207, pp. 471–501. [Cited in Chapter 11. A very clear overview of surface charge effects in ion channels.]
Läuger, P. (1973). Ion transport through pores: a rate-theory analysis. Biophysica and Biochimica Acta, 311, 423–441. [Cited in Chapter 14. A thorough development of barrier models for permeation.]
Lecar, H. and Sachs, F. (1981). Membrane noise analysis. In Excitable Cells in Tissue Culture, ed. Nelson, P. G. and Lieberman, M.. New York: Plenum, pp. 137–172.
Lee, A. W., Karplus, M., Poyart, C. and Bursaux, E. (1988). Analysis of proton release in oxygen binding by hemoglobin: implications for cooperative mechanism. Biochemistry, 27, 1285–1301.
Lesk, A. M., Lo Conte, L. and Hubbard, T. J. P. (2001). Assessment of novel fold targets in CASP4: Predictions of three-dimensional structures, secondary structures, and interresidue contacts. Proteins: Structure, Function, and Genetics, 45(S5), 98–118.
Levinthal, C. (1968). Are there pathways for protein folding. J. Chem. Phys., 65, 44–45.
Levitt, D. G (1978a). Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys. J., 22, 209–219.
Levitt, D. G(1978b). Electrostatic calculations for an ion channel II. Kinetic behavior of the gramicidin A channel. Biophys. J., 22, 221–248.
Levitt, M., Sander, C. and Stern, P. S. (1985). Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol., 181, 423–447.
Levitt, M., Hirshberg, M., Sharon, R. and Daggett, V. (1995). Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Communs, 91, 215–231.
Lewis, C. A. (1979). Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol., 286, 417–445.
Lifson, S. and Roig, A. (1963). On the theory of helix–coil transition in polypeptides. J. Chem. Phys., 34, 1961–1974. [Cited in Chapter 3. This is an elegent and clear development of the mathematical theory of helix–coil transitions.]
Lifson, S. and Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys., 49, 5119–5129.
Lin, J., Cassidy, C. S. and Frey, P. A. (1998). Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Biochemistry, 37, 11 940–11 948.
Linderstrøm-Lang, K. (1924). On the ionization of proteins. Compt. rend. trav. Carlsberg, 17, 1–29. (See also Linderstrøm-Lang, K. (1962) Selected Papers. New York: Academic Press.)
Ma, J. C. and Dougherty, D. A. (1997). The cation–π interaction. Chem. Rev., 97, 1303–1324.
MacInnes, D. A. (1961). The Principles of Electrochemistry. New York: Dover.
MacKinnon, R., Latorre, R. and Miller, C. (1989). Role of surface electrostatics in the operation of a high-conductance Ca2 +-activated K+ channel. Biochemistry, 28, 8092–8099.
Magee, J. C. and Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci., 3, 895–903.
Mainen, Z. F., Joerges, J., Huguenard, J. R. and Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15, 1427–1439.
Major, G., Evan, J. D. and Jack, J. B. (1993). Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys. J., 65, 423–449. [Cited in Chapter 15. This paper explores the cable equation in complicated dendritic arbors.]
Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys., 51, 924–933.
Manning, G. S.(1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties. Q. Rev. Biophys., 11, 179–246.
Marcus, R. A. (1964). Chemical and electrochemical electron-transfer theory. Ann. Rev. Phys. Chem., 15, 155–196.
Marcus, R. A.(1968). Theoretical relations among rate constants, barriers, and Brønsted slopes of chemical reactions. J. Phys. Chem., 72, 891–899.
Martinez, M. B., Flickinger, M. C. and Nelsestuen, G. L. (1996). Accurate kinetic modeling of alkaline phosphatase in the Escherichia coli periplasm: implications for enzyme properties and substrate diffusion. Biochemistry, 35, 1179–1186.
Marty, A, and Neher, E. (1995). Tight-seal whole-cell recording. In Single-Channel Recording, ed. Sakmann, B. and Neher, E.. New York: Plenum, pp. 31–51.
McCammon, A. J., Wolynes, P. G. and Karplus, M. (1979). Picosecond dynamics of tyrosine side chains in proteins. Biochemistry, 18, 927–942. [Cited in Chapter 10. This is a seminal paper on the internal dynamics of proteins.]
McLaughlin, S. (1989). The electrostatic properties of membranes. Ann. Rev. Biophys. Biophys. Chem., 18, 113–136.
McQuarrie, D. A., (1976). Statistical Mechanics. New York: Harper & Row. [This is highly recommended as a resource for statistical mechanics.]
Meyer, E., Müller, C. O. and Fromherz, P. (1997). Cable properties of dendrites in hippocampal neurons of the rat mapped by a voltage-sensitive dye. Eur. J. Neurosci., 9, 778–785.
Miedema, H. (2002). Surface potentials and the calculated selectivity of ion channels. Biophys. J., 82, 156–159.
Migliore, M., Hoffman, D. A., Magee, J. C. and Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comp. Neurosci., 7, 5–15.
Millar, J. A., Barrett, L., Southan, A. P., Page, K. M., Fyffe, R. E. W. and Robertson, B. (2000). A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl Acad. Sci., 97, 3614–3618.
Miller, B. G. and Wolfenden, R. (2002). Catalytic proficiency: The unusual case of OMP decarboxylase. Ann. Rev. Biochem., 71, 847–885.
Moczydlowski, E., Alvarez, O., Vergara, C. and Latorre, R. (1985). Effect of phospholipid surface charge on the conductance and gating of a Ca2 +-activated K+ channel in planar lipid bilayers. J. Membrane Biol., 83, 273–282.
Monod, J., Wyman, J. and Changeux, J. -P. (1965). On the nature of allosteric transitions: A plausible model. J. Mol. Biol., 12, 88–118. [Cited in Chapter 5. This is the seminal paper on allosteric regulation of proteins. A remarkable conceptual advance and still well worth reading.]
Moore, W. J. (1972). Physical Chemistry. Englewood Cliffs: Prentice-Hall. [This is highly recommended as a resource for statistical mechanics.]
Morais-Cabral, J. H., Zhou, Y. and MacKinnon, R. (2001). Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature, 414, 37–42.
Morris, C. E. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35, 193–213. [Cited in Chapter 16. A clear and illuminating account of membrane oscillations.]
Moy, G., Corry, B., Kuyucak, S. and Chung, S. -H. (2000). Tests of continuum theories as models of ion channels. I. Poisson–Boltzmann theory versus Brownian dynamics. Biophys. J., 78, 2349–2363.
Myers, J. K. and Pace, C. N. (1996). Hydrogen bonding stabilizes globular proteins. Biophys. J., 71, 2033–2039.
Nakajima, Y., Nakajima, S. and Inoue, M. (1988). Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons. Proc. Natl Acad. Sci., 85, 3643–3647.
Nakatani, H. and Dunford, H. B. (1979). Meaning of diffusion-controlled association rate constants in enzymology. J. Phys. Chem., 83, 2662–2665.
Neher, E. and Steinbach, J. H. (1978). Local anesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol., 277, 153–176. [Cited in Chapter 9. This is a striking example of the power of single-channel kinetics in the analysis of mechanisms of drug action.]
Nelsestuen, G. L. and Martinez, M. B. (1997). Steady state enzyme velocities that are independent of [enzyme]: an important behavior in many membrane and particle-bound states. Biochemistry, 36, 9081–9086.
Nolte, H. -J., Rosenberry, T. L. and Neumann, E. (1980). Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry, 19, 3705–3711.
Noskov, S. Y., Berniche, S. and Roux, B. (2004). Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431, 830–834.
Obaid, A. L. and Salzberg, B. M. (1996). Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization. J. Gen. Physiol., 107, 353–368.
Oberhauser, A. F. and Fernandez, J. M. (1995). Hydrophobic ions amplify the capacitance currents used to measure exocytotic fusion. Biophys. J., 69, 451–459.
O'Mara, M., Barry, P. H. and Chung, S. -H. (2003). A model of the glycine receptor deduced from Brownian dynamics studies. Proc. Natl Acad. Sci., 100, 4310–4315.
O'Neil, K. T. and DeGrado, W. F. (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science, 250, 646–651.
Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker, Inc.
Overbeek, J. Th. G. (1952). The electrochemistry of the double layer. In Colloid Science, Vol. 1, ed. Kruyt, H. R.. Amsterdam: Elsevier Publishing Company, pp. 115–193.
Overbeek, J. T. G. and Wiersema, P. H. (1967). The interpretation of electrophoretic mobilities. In Electrophoresis, ed. Bier, M.. New York: Academic Press, pp. 1–52.
Pace, C. N. (1992). Contributions of the hydrophobic effect to globular protein stability. J. Mol. Biol., 226, 29–35.
Papazian, D. M., Timpe, L. C., Jan, Y. N. and Jan, L. Y. (1991). Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature, 349, 305–310.
Parsegian, V. A. (1969). Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatics problems. Nature, 221, 844–846. [Cited in Chapters 2 and 14. This is an early study that defined the basic energetic parameters of permeation.]
Parsegian, V. A.(1973). Long-range physical forces in the biological milieu. Ann. Rev. Biophys. Bioeng., 2, 221–255.
Patlak, C. S. (1960). Derivation of an equation for the diffusion potential. Nature, 188, 944–945.
Perkel, D. H., Mulloney, B. and Budelli, R. W. (1981). Quantitative methods for predicting neuronal behavior. Neuroscience, 5, 823–837.
Perutz, M. F., Wilkenson, A. J., Paoli, M. and Dodson, D. D. (1998). The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Ann. Rev. Biophys. Biomol. Structure, 27, 1–34. [Cited in Chapter 5. This contains a clear and thorough discussion of the evidence favoring a two-state description of hemoglobin.]
Peters, R. and Cherry, R. J. (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman–Delbrück equations. Proc. Natl Acad. Sci., 79, 4317–4321.
Piek, T. (1975). Ionic and electrical properties. In Insect Muscle, ed. Usherwood, P. N. R.. New York: Academic Press, pp. 275–336.
Plowman, K. M. (1972). Enzyme Kinetics. New York: McGraw Hill.
Pokarowski, P., Kolinski, A. and Skolnick, J. (2003). A minimal physically realistic protein-like lattice model: designing an energy landscape that ensures all-or-none folding to a unique native state. Biophys. J., 84, 1518–1526.
Poland, D. and Scheraga, H. A. (1970). Theory of Helix–Coil Transitions. New York: Academic Press.
Privalov, P. L. (1979). Stability of proteins. Adv. Protein Chem., 33, 167–241.
Privalov, P. L.(1982). Stability of proteins: Proteins which do not present a single cooperative system. Adv. Protein Chem., 35, 1–104. [Cited in Chapters 2 and 3. This reference presents thorough reviews of the thermodynamics of thermal transitions in proteins.]
Prod'hom, B., Peitrobon, D. and Hess, P. (1987). Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2 + channel. Nature, 329, 243.
Pumphrey, R. J. and Young, J. Z. (1938). The rates of conduction of nerve fibres of various diameters in cephalopods. J. Exp. Biol., 14, 453–466.
Putnam, S. J., Coulson, A. F., Farley, I. R., Ridd Leston, B. and Knowles, J. R. (1972). Specificity and kinetics of triose phosphate isomerase from chicken muscle. Biochem. J., 129, 301–310.
Raleigh, D. P. and DeGrado, W. F. (1992). A de novo designed protein shows a thermally induced transition from a native to a molten globule-like state. J. Amer. Chem. Soc., 114, 10 079–10 081.
Rall, W. (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol., 1, 491–527. [Cited in Chapter 15. This provides a remarkable insight into how to simplify the cable analysis of dendrites.]
Rall, W.(1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol., 30, 1138–1168.
Rall, W.(1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J., 9, 1483–1508. [Cited in Chapter 15. A thorough and clear exposition of practical aspects of cable analysis.]
Rall, W.(1977). Core conductor theory and cable properties of neurons. In Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, ed. Brookhart, J. M. and Mountcastle, V. B.. Bethesda: American Physiological Society, pp. 39–97.
Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G. and Frank, K. (1967). Dendritic location of synapses and possible mechanisms for the monosynaptic EPSPs in motoneurons. J. Neurophysiol., 30, 1169–1193.
Ramachandran, G. N. and Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Adv. Protein Chem., 23, 284–437.
Ramachandran, G. N., Venkatachalam, C. M. and Krimm, S. (1966). Stereochemical criteria for polypeptide and protein chain conformations. 3. Helical and hydrogen-bonded polypeptide chains. Biophys. J., 6(6), 849–872.
Rand, R. P. (1981). Interacting phospholipid bilayers: measured forces and induced structural changes. Ann. Rev. Biophys. Bioengin., 10, 288–314.
Rapp, M., Yarom, Y. and Segev, I. (1996). Modeling back propagating action potentials in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl Acad. Sci., 93, 11 985–11 990.
Rashin, A. A. and Honig, B. (1985). Reevaluation of the Born model of ion hydration. J. Phys. Chem., 89, 5588–5593.
Record, M. T. (1975). Effects of Na+ and Mg++ ions on the helix–coil transition of DNA. Biopolymers, 14, 2137–2158.
Record, M. T., Mazur, S. J., Melancon, P., Roe, J. -H., Shaner, S. L. and Unger, L. (1981). Double helical DNA: conformations, physical properties, and interactions with ligands. Ann. Rev. Biochem., 50, 997–1024.
Redman, S. and Walmsley, B. (1983). The time course of synaptic potentials evoked in cat spinal motoneurons at identified group 1a synapses. J. Physiol., 343, 117–133.
Reed, A. E. and Weinhold, F. (1991). Natural bond orbital analysis of internal rotation barriers and related phenomena. Isr. J. Chem., 31, 277–285.
Rees, D. C., DeAntonio, L. and Eisenberg, D. (1989). Hydrophobic organization of membrane proteins. Science, 245, 510–513.
Richard, J. P. (1998). The enhancement of enzymatic rate accelerations by Brønsted acid–base catalysis. Biochemistry, 37, 4305–4309.
Rigler, R. and Elson, E. L. (eds.) (2001). Fluorescence Correlaton Spectroscopy: Theory and Applications. Berlin: Springer.
Rogawski, M. A. (1985). The A-current: how ubiquitous a feature of excitable cells is it? Trends Neurosci., 8, 214–219.
Rose, G. D., Gesolowitz, A. R., Lesser, G. J., Lee, R. H. and Zehfus, M. H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science, 229 (4716), 834–838.
Roseman, M. A. (1988). Hydrophobicity of the peptide C = O … H–N hydrogen-bonded group. J. Mol. Biol., 201, 621–623.
Rosenthal, L., Rabolt, J. F. and Hummel, J. (1982). An investigation of the conformational equilibrium of n-butane in a solvent using Raman spectroscopy. J. Chem. Phys., 76, 817–820.
Rothberg, B. S. and Magleby, K. L. (2001). Testing for detailed balance (microscopic reversibility) in ion channel gating. Biophys. J., 80, 3025–3026.
Roux, B. and MacKinnon, R. (1999). The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science, 285, 100–102.
Roux, B., Berniche, S. and Im, W. (2000). Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry, 39, 13 295–13 306.
Rushton, W. A. H. (1951). A theory of the effects of fibre size in medullated nerve. J. Physiol., 115, 101–122.
Saffman, P. G. and Delbrück, M. (1975). Brownian motion in biological membranes. Proc. Natl Acad. Sci., 72, 3111–3113.
Sanchez, I. C. (1979). Phase transition behavior of the isolated polymer chain. Macromolecules, 12, 980–988.
Saxton, M. J. and Jacobson, K. (1997). Single-particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct., 26, 373–399.
Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 51, 660–671.
Schafmeister, C. E., LaPorte, S. L., Miercke, L. J. W. and Stroud, R. M. (1997). A designed four helix bundle protein with native-like structure. Nature Struct. Biol., 4, 1039–1046.
Scheer, A., Fanelli, F., Costa, T., Benedetti, P. G. and Cotecchia, S. (1997). The activation process of the α1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc. Natl Acad. Sci., 94, 808–818.
Schirmer, T. and Evans, P. R. (1990). Structural basis of the allosteric behavior of phosphofructokinase. Nature, 343, 140–145.
Schoppa, N. E., McCormack, K., Tanouye, M. A. and Sigworth, F. J. (1992). The size of the gating charge in wild-type and mutant Shaker potassium channels. Science, 255, 1712–1715. [Cited in Chapter 1. This is an excellent synthesis of the charge and steepness in a voltage-induced protein transition.]
Schultz, P. G. and Lerner, R. A. (1995). From molecular diversity to catalysis: Lessons from the immune system. Science, 269: 1835–1842.
Schumaker, M. F. and MacKinnon, R. (1990). A simple model for multi-ion permeation: single vacancy conduction in a simple pore model. Biophys. J., 58, 975–984.
Segev, I. (1990). Computer study of presynaptic inhibition controlling the spread of action potentials into nerve terminals. J. Neurophys., 63, 987–997.
Segev, I., Fleshman, J. W. and Burke, R. E. (1989). Compartmental models of complex neurons. In Methods in Neural Modeling, ed. Koch, C. and Segev, I.. Cambridge: MIT Press, pp. 63–96.
Serrano, L., Matouschek, A. and Fersht, A. R. (1992). The folding of an enzyme III. Structure of the transition state of barnase analysed by a protein engineering procedure. J. Mol. Biol., 224, 805–818.
Setlow, R. B., and Pollard, E. C. (1962). Molecular Biophysics, chapter 6. Palo Alto: Addison-Wesley Publishing Co. Inc. [Cited in Chapter 2. This forgotten text contains a lucid presentation of molecular forces.]
Shi, Z., Krantz, B. A., Kallenbach, N. and Sosnick, T. R. (2002a). Contribution of hydrogen bonding to protein stability estimated from isotope effects. Biochemistry, 41, 2120–2129.
Shi, Z., Olson, C. A. and Kallenbach, N. R. (2002b). Cation–π interaction in model α-helical peptides. J. Amer. Chem. Soc., 124, 3284–3291.
Shi, Z., Olson, C. A., Rose, G. D., Baldwin, R. L. and Kallenbach, N. R. (2002c). Polyproline II structure in a sequence of seven alanine residues. Proc. Natl Acad. Sci., 99, 9190–9195.
Shoup, D., Lipari, G. and Szabo, A. (1981). Diffusion-controlled bimolecular reaction rates. Biophys. J., 36, 697–714.
Sigworth, F. J. (1994). Voltage gating of ion channels. Q. Rev. Biophys., 27, 1–27.
Silverman, D. N. (2000). Marcus rate theory applied to enzymatic proton transfer. Biochim. Biophys. Acta, 1458, 88–103.
Silverman, D. N., Tu, C., Chen, X., Tanhauser, S. M., Kresge, A. J. and Laipis, P. J. (1993). Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III. Biochemistry, 32, 10 757–10 761.
Silverman, J. A., Balakrishnan, R. and Harbury, P. B. (2001). Reverse engineering the (β/α)8 barrel fold. Proc. Natl Acad Sci., 98, 3092–3097.
Sine, S. M., Claudio, T. and Sigworth, F. (1990). Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. J. Gen. Physiol., 96, 395–437.
Spolar, R. S. and Record, M. T. (1994). Coupling of local folding to site-specific binding of proteins to DNA. Science, 263, 777–784. [Cited in Chapter 4. This is a study that considers many different contributions to the free energy of association.]
Spolar, R. S., Livingstone, J. R. and Record, M. T. (1992). Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surfaces from water. Biochemistry, 31, 3947–3955.
Steinberg, I. Z. (1987). Relationship between statistical properties of single ion channel recordings and thermodynamic state of the channels. J. Theor. Biol., 124, 71–87.
Steinberg, I. Z. and Scheraga, H. A. (1963). Entropy changes accompanying association reactions of proteins. J. Biol. Chem., 238, 172–181.
Stigter, D. and Dill, K. A. (1990). Charge effects on folded and unfolded proteins. Biochemistry, 29, 1262–1271.
Stillinger, F. H. (1980). Water revisited. Science, 209, 451–457.
Stockbridge, N. (1988). Etiology of the supernormal period. Biophys. J., 54, 777–780.
Stuart, G. J. and Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.
Stuart, G., Spruston, N. and Hausser, M. (2000). Dendrites. Oxford: Oxford University Press.
Stuehmer, W., Conti, F., Suzuki, H.et al. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature, 339, 597–603.
Sukharev, S., Blount, P., Martinac, B. and Kung, C. (1997). Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Ann. Rev. Physiol., 59, 633–657.
Sukharev, S., Durell, S. R. and Guy, H. R. (2001). Structural models of the MscL gating mechanism. Biophys. J., 81 (2), 917–936.
Sussman, J. L., Harel, M., Frolow, F.et al. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253, 872–879.
Swadlow, H. A., Kocsis, J. D. and Waxman, S. G. (1980). Modulation of impulse conduction along the axonal tree. Ann. Rev. Biophys. Bioeng., 9, 143–179.
Szabo, A. and Karplus, M. (1972). A mathematical model for structure-function relations in hemoglobin. J. Mol. Biol., 72, 163–197. [Cited in Chapter 5. This is an important theoretical effort to relate ideas of allosteric regulation to a more detailed picture of protein structure.]
Tainer, J. A., Getzoff, E. D., Richardson, J. S. and Richardson, D. C. (1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306, 284–287.
Tanford, C. (1955). Hydrogen ion titration curves of proteins. In Electrochemistry in Biology and Medicine (ed. Shedlovsky, T.). New York: John Wiley & Sons, pp. 248–265.
Tanford, C.(1961). Physical Chemistry of Macromolecules. New York: John Wiley & Sons.
Tanford, C.(1968). Protein denaturation. Adv. Protein Chem., 23, 121–282.
Tanford, C.(1970). Protein denaturation Part C. Theoretical models for the mechanisms of denaturation. Adv. Protein Chem., 24, 1–95.
Tauc, L. (1962). Site of origin and propagation of spike in the giant neuron of Aplysia. J. Gen. Physiol., 45, 1077–1097.
Terada, S., Kinjo, M. and Hirokawa, N. (2000). Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell, 103, 141–155.
Tian, F. and Cross, T. A. (1999). Cation transport: an example of structural based selectivity. J. Mol. Biol., 285, 1993–2003.
Tidor, B. and Karplus, M. (1994). The contribution of vibrational entropy to molecular association: the dimerization of insulin. J. Mol. Biol., 238, 405–414.
Tucek, S. (1997). Is the R and R∗ dichotomy real? TIPS, 18, 414–416.
Tytgat, J. and Hess, P. (1992). Evidence for cooperative interactions in potassium channel gating. Nature, 359, 420–423.
Ussing, H. H. (1949). The distinction by means of tracers between active transport and diffusion. Acta Physiologica Scand., 19, 43–56.
Kampen, N. (1981). Stochastic Processes in Physics and Chemistry. New York: North Holland.
Wallace, B. A. (1990). Gramicidin channels and pores. Ann. Rev. Biophys. Biophys. Chem., 19, 127–157.
Wang, W., Donini, O., Reyes, C. M. and Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Ann. Rev. Biophys. Biomol. Struct., 30, 211–243.
Waxman, S. G. and Swadlow, H. A. (1977). The conduction properties of axons in central white matter. Progress Neurobiol., 8, 297–324.
Warshel, A. and Levitt, M. (1976). Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol., 103, 227–249. [Cited in Chapter 10. A seminal paper using computational methods to investigate the energetics of enzyme catalysis.]
Weiner, M. C. and White, S. H. (1992). Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data III. Complete structure. Biophys. J., 61, 434–447.
Weiner, S. J., Kollman, P. A., Nguyen, D. T. and Case, D. A. (1986). An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem., 7, 230–252.
Weinhold, F. (1997). Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond perspective. J. Mol. Struct. (Theochem)., 398–399, 181–197.
Wells, T. N. C. and Fersht, A. R. (1986). Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase. Biochemistry, 25, 1881.
Wess, J., Gdula, D. and Brann, M. R. (1990). Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J., 10, 3729–3734.
Wilson, E. B., Decius, J. C. and Cross, P. C. (1955). Molecular Vibrations, chapter 8. New York: Dover Publications, Inc.
Wu, N., Mo, Y., Gao, J. and Pai, E. F. (2000). Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl Acad. Sci., 97 (5), 2017–2022.
Yue, K., Fiebig, K. M., Thomas, P. D., Chan, H. S., Shakhnovich, E. I. and Dill, K. A. (1995). A test of lattice protein folding algorithms. Proc. Natl Acad. Sci., 92, 325–329.
Zeltwanger, S., Wang, F., Wang, G. -T., Gilles, K. D. and Hwang, T. -C. (1999). Gating of the cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis: quantitative analysis of a cyclic gating scheme. J. Gen. Physiol., 113, 541–554.
Zerangue, N. and Kavanaugh, M. P. (1996) Flux coupling in a neuronal glutamate transporter. Nature, 383, 634–637.
Zhang, S. J. and Jackson, M. B. (1995). Properties of the GABAa receptor of rat posterior pituitary nerve terminals. J. Neurophysiol., 73, 1135–1144.
Zhong, W., Gallivan, J. P., Zhang, Y., Li, L., Lester, H. A. and Dougherty, D. A. (1998). From ab initio quantum mechanics to molecular neurobiology: a cation–π binding site in the nicotinic receptor. Proc. Natl Acad. Sci., 95, 12 088–12 093.
Zimm, B. H. and Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys., 31, 526–533.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.