Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NANOMEDICINE

A potent targeted cancer nanotherapeutic

An antibody-modified nanoparticle encapsulating a pH-sensitive taxane prodrug, and targeting an overexpressed receptor in tumours, improves the tolerability and anticancer efficacy of the active drug in multiple animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure of the antibody-targeted nanotherapeutic MM-310.
Fig. 2: Therapeutic efficacy of MM-310.

References

  1. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  Google Scholar 

  2. Wayne, A. S., FitzGerald, D. J., Kreitman, R. J. & Pastan, I. Blood 123, 2470–2477 (2014).

    Article  CAS  Google Scholar 

  3. Wilhelm, S. et al. Nat. Rev. Mat. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  4. Amiri-Kordestani, L. et al. Clin. Cancer Res. 20, 4436–4441 (2014).

    Article  CAS  Google Scholar 

  5. Kamoun, W. S. et al. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-019-0385-4 (2019).

    Article  Google Scholar 

  6. Tandon, M., Vemula, S. V. & Mittal, S. K. Expert Opin. Ther. Targets 15, 31–51 (2010).

    Article  Google Scholar 

  7. Tanaka, T. et al. Cancer Res. 70, 3687–3696 (2010).

    Article  CAS  Google Scholar 

  8. Patel, A. R., Chougule, M. & Singh, M. Pharm. Res. 31, 2796–2809 (2014).

    Article  CAS  Google Scholar 

  9. Patel, K., Doddapaneni, R., Sekar, V., Chowdhury, N. & Singh, M. Mol. Pharm. 13, 2049–2058 (2016).

    Article  CAS  Google Scholar 

  10. Haghiralsadat, F. et al. Pharm. Res. 34, 2891–2900 (2017).

    Article  CAS  Google Scholar 

  11. Silverman, J. A. & Deitcher, S. R. Cancer Chemother. Pharmacol. 71, 555–564 (2013).

    Article  CAS  Google Scholar 

  12. Gómez-Cuadrado, L., Tracey, N., Ma, R., Qian, B. & Brunton, V. G. Dis. Model. Mech. 10, 1061–1074 (2017).

    Article  Google Scholar 

  13. Yang, Q. & Lai, S. K. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 7, 655–677 (2015).

    Article  Google Scholar 

  14. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Nat. Commun. 9, 1410 (2018).

    Article  Google Scholar 

  15. Chung, A. S., Lee, J. & Ferrara, N. Nat. Rev. Cancer 10, 505–514 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kavallaris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moles, E., Kavallaris, M. A potent targeted cancer nanotherapeutic. Nat Biomed Eng 3, 248–250 (2019). https://doi.org/10.1038/s41551-019-0390-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0390-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer