Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design, assembly, characterization, and operation of double-stranded interlocked DNA nanostructures

Abstract

Mechanically interlocked DNA nanostructures are useful as flexible entities for operating DNA-based nanomachines. Interlocked structures made of double-stranded (ds) DNA components can be constructed by irreversibly threading them through one another to mechanically link them. The interlocked components thus remain bound to one another while still permitting large-amplitude motion about the mechanical bond. The construction of interlocked dsDNA architectures is challenging because it usually involves the synthesis and modification of small dsDNA nanocircles of various sizes, dependent on intrinsically curved DNA. Here we describe the design, generation, purification, and characterization of interlocked dsDNA structures such as catenanes, rotaxanes, and daisy-chain rotaxanes (DCRs). Their construction requires precise control of threading and hybridization of the interlocking components at each step during the assembly process. The protocol details the characterization of these nanostructures with gel electrophoresis and atomic force microscopy (AFM), including acquisition of high-resolution AFM images obtained in intermittent contact mode in liquid. Additional functionality can be conferred on the DNA architectures by incorporating proteins, molecular switches such as photo-switchable azobenzene derivatives, or fluorophores for studying their mechanical behavior by fluorescence quenching or fluorescent resonance energy transfer experiments. These modified interlocked DNA architectures provide access to more complex mechanical devices and nanomachines that can perform a variety of desired functions and operations. The assembly of catenanes can be completed in 2 d, and that of rotaxanes in 3 d. Addition of azobenzene functionality, fluorophores, anchor groups, or the site-specific linkage of proteins to the nanostructure can extend the time line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the interlocked dsDNA nanostructures presented in this protocol.
Fig. 2: Flowchart of the design and assembly process.
Fig. 3: dsDNA ring structures.
Fig. 4: Diagram showing the process for assembling a spherical stopper.
Fig. 5: PX100 axle (Step 1C).
Fig. 6: Catenane assembly.
Fig. 7: Rotaxane assembly.
Fig. 8: DCR assembly.
Fig. 9: Light-controlled DNA rotaxane shuttle.
Fig. 10: Catenane nanoengine assembly (Step 2A) and operation.
Fig. 11: Catenane walker movement.
Fig. 12: Expected results during [2]catenane walker assembly.
Fig. 13: Expected results during [3]catenane assembly.
Fig. 14: Expected results during [2]rotaxane assembly.
Fig. 15: AFM image and graphic representation of the purified [2]Rotmec with PX100 axle.
Fig. 16: Expected results during DCR assembly.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. Engl. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  2. Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  3. Heckel, A. & Famulok, M. Building objects from nucleic acids for a nanometer world. Biochimie 90, 1096–1107 (2008).

    Article  CAS  Google Scholar 

  4. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  5. Endo, M. & Sugiyama, H. DNA origami nanomachines. Molecules 23, E1766 (2018).

    Article  Google Scholar 

  6. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  7. Jester, S. S. & Famulok, M. Mechanically interlocked DNA nanostructures for functional devices. Acc. Chem. Res. 47, 1700–1709 (2014).

    Article  CAS  Google Scholar 

  8. Lu, C. H., Cecconello, A. & Willner, I. Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 138, 5172–5185 (2016).

    Article  CAS  Google Scholar 

  9. Valero, J., Lohmann, F. & Famulok, M. Interlocked DNA topologies for nanotechnology. Curr. Opin. Biotechnol. 48, 159–167 (2017).

    Article  CAS  Google Scholar 

  10. Rasched, G. et al. DNA minicircles with gaps for versatile functionalization. Angew. Chem. Int. Ed. Engl. 47, 967–970 (2008).

    Article  CAS  Google Scholar 

  11. Schmidt, T. L. et al. Polyamide struts for DNA architectures. Angew. Chem. Int. Ed. Engl. 46, 4382–4384 (2007).

    Article  CAS  Google Scholar 

  12. Li, T., Lohmann, F. & Famulok, M. Interlocked DNA nanostructures controlled by a reversible logic circuit. Nat. Commun. 5, 4940 (2014).

    Article  CAS  Google Scholar 

  13. Lohmann, F., Valero, J. & Famulok, M. A novel family of structurally stable double stranded DNA catenanes. Chem. Commun. 50, 6091–6093 (2014).

    Article  CAS  Google Scholar 

  14. Ackermann, D., Jester, S. S. & Famulok, M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew. Chem. Int. Ed. Engl. 51, 6771–6775 (2012).

    Article  CAS  Google Scholar 

  15. Ackermann, D. et al. A double-stranded DNA rotaxane. Nat. Nanotechnol. 5, 436–442 (2010).

    Article  CAS  Google Scholar 

  16. Cecconello, A., Lu, C. H., Elbaz, J. & Willner, I. Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. Nano Lett. 13, 6275–6280 (2013).

    Article  CAS  Google Scholar 

  17. List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G. & Simmel, F. C. Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414 (2016).

    Article  CAS  Google Scholar 

  18. Lohmann, F., Weigandt, J., Valero, J. & Famulok, M. Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. Angew. Chem. Int. Ed. Engl. 53, 10372–10376 (2014).

    Article  CAS  Google Scholar 

  19. Powell, J. T., Akhuetie-Oni, B. O., Zhang, Z. & Lin, C. DNA origami rotaxanes: tailored synthesis and controlled structure switching. Angew. Chem. Int. Ed. Engl. 55, 11412–11416 (2016).

    Article  CAS  Google Scholar 

  20. Ulanovsky, L., Bodner, M., Trifonov, E. N. & Choder, M. Curved DNA: design, synthesis, and circularization. Proc. Natl. Acad. Sci. USA 83, 862–866 (1986).

    Article  CAS  Google Scholar 

  21. Centola, M., Valero, J. & Famulok, M. Allosteric control of oxidative catalysis by a DNA rotaxane nanostructure. J. Am. Chem. Soc. 139, 16044–16047 (2017).

    Article  CAS  Google Scholar 

  22. Lohmann, F., Ackermann, D. & Famulok, M. Reversible light switch for macrocycle mobility in a DNA rotaxane. J. Am. Chem. Soc. 134, 11884–11887 (2012).

    Article  CAS  Google Scholar 

  23. Valero, J., Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. Nat. Nanotechnol. 13, 496–503 (2018).

    Article  CAS  Google Scholar 

  24. Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    Article  CAS  Google Scholar 

  25. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  Google Scholar 

  26. Sauvage, J. & Amabilino, D. The beauty of knots at the molecular level. Top. Curr. Chem 323, 107–125 (2012).

    Article  CAS  Google Scholar 

  27. Schalley, C. A., Beizai, K. & Vögtle, F. On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

    Article  CAS  Google Scholar 

  28. Gil-Ramirez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. Engl. 54, 6110–6150 (2015).

    Article  CAS  Google Scholar 

  29. Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. Engl. 54, 10080–10088 (2015).

    Article  CAS  Google Scholar 

  30. Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).

    Article  CAS  Google Scholar 

  31. Sauvage, J. P. From chemical topology to molecular machines (nobel lecture). Angew. Chem. Int. Ed. Engl. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  32. Stoddart, J. F. Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. Engl. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  33. Lu, C. H. et al. Switchable reconfiguration of a seven-ring interlocked DNA catenane nanostructure. Nano Lett. 15, 7133–7137 (2015).

    Article  Google Scholar 

  34. Lu, C. H. et al. Switchable reconfiguration of an interlocked DNA olympiadane nanostructure. Angew. Chem. Int. Ed. Engl. 53, 7499–7503 (2014).

    Article  CAS  Google Scholar 

  35. Lu, C. H., Cecconello, A., Elbaz, J., Credi, A. & Willner, I. A three-station DNA catenane rotary motor with controlled directionality. Nano Lett. 13, 2303–2308 (2013).

    Article  CAS  Google Scholar 

  36. MacDonald, D., Herbert, K., Zhang, X., Pologruto, T. & Lu, P. Solution structure of an A-tract DNA bend. J. Mol. Biol. 306, 1081–1098 (2001).

    Article  CAS  Google Scholar 

  37. Valero, J., Lohmann, F., Keppner, D. & Famulok, M. Single-stranded tile stoppers for interlocked DNA architectures. ChemBioChem 17, 1146–1149 (2016).

    Article  CAS  Google Scholar 

  38. Weigandt, J., Chung, C.-L., Jester, S.-S. & Famulok, M. A daisy chain rotaxane interlocked DNA nanostructure. Angew. Chem. Int. Ed. Engl. 55, 5512–5516 (2016).

    Article  CAS  Google Scholar 

  39. Haydell, M. W., Centola, M., Adam, V., Valero, J. & Famulok, M. Temporal and reversible control of a DNAzyme by orthogonal photoswitching. J. Am. Chem. Soc. 140, 16868–16872 (2018).

    Article  CAS  Google Scholar 

  40. Škugor, M. et al. Orthogonally photocontrolled non-autonomous DNA walker. Angew. Chem. Intl. Edn. 58, 6948–6951 (2019).

    Article  Google Scholar 

  41. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  Google Scholar 

  42. Brinkers, S., Dietrich, H. R. C., de Groote, F. H., Young, I. T. & Rieger, B. The persistence length of double stranded DNA determined using dark field tethered particle motion. J. Chem. Phys. 130, 215105 (2009).

    Article  Google Scholar 

  43. Shen, Z., Yan, H., Wang, T. & Seeman, N. C. Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. J. Am. Chem. Soc. 126, 1666–1674 (2004).

    Article  CAS  Google Scholar 

  44. Ackermann, D. & Famulok, M. Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology. Nucleic Acids Res 41, 4729–4739 (2013).

    Article  CAS  Google Scholar 

  45. Rotzler, J. & Mayor, M. Molecular daisy chains. Chem. Soc. Rev. 42, 44–62 (2013).

    Article  CAS  Google Scholar 

  46. Asanuma, H., Liang, X., Yoshida, T. & Komiyama, M. Photocontrol of DNA duplex formation by using azobenzene-bearing oligonucleotides. ChemBioChem 2, 39–44 (2001).

    Article  CAS  Google Scholar 

  47. Adam, V. et al. Expanding the toolbox of photoswitches for DNA nanotechnology using arylazopyrazoles. Chemistry 24, 1062–1066 (2018).

    Article  CAS  Google Scholar 

  48. Nishioka, H., Liang, X., Kashida, H. & Asanuma, H. 2′,6′-Dimethylazobenzene as an efficient and thermo-stable photo-regulator for the photoregulation of DNA hybridization. Chem. Commun. (Camb) 2007, 4354-4356 (2007).

  49. Asanuma, H. et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007).

    Article  CAS  Google Scholar 

  50. Daubendiek, S. L., Ryan, K. & Kool, E. T. Rolling-circle RNA synthesis: circular oligonucleotides as efficient substrates for T7 RNA polymerase. J. Am. Chem. Soc. 117, 7818–7819 (1995).

    Article  CAS  Google Scholar 

  51. Nakata, E. et al. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew. Chem. Int. Ed. Engl. 51, 2421–2424 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible through funding from the European Research Council (ERC; grant no. 267173), the Max-Planck-Society (Max-Planck fellowship to M.F.), the Alexander von Humboldt Foundation (postdoctoral grants to J.V. and Y.M.), the German Academic Exchange Service (doctoral grant to M.Š.), and the China Scholarship Council CSC (doctoral scholarship to Z.Y.). M.F. extends his most sincere thanks to all the co-workers and collaborators who have contributed to this project over the past 10 years. Their names appear throughout the references. We also thank V. Adam for the synthesis of azobenzene derivatives.

Author information

Authors and Affiliations

Authors

Contributions

J.V., M.C., Y.M., M.Š., Z.Y., M.W.H., and M.F. conceived and designed the protocol and wrote the manuscript. J.V., M.C., Y.M., M.Š., Z.Y., M.W.H., and D.K. carried out the experiments.

Corresponding author

Correspondence to Michael Famulok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Protocols thanks Yamuna Krishnan, Francesco Ricci and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Rasched, G. et al. Angew. Chem. Int. Ed. Engl. 47, 967–970 (2008): https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200704004

Ackermann, D. et al. Nat. Nanotechnol. 5, 436–442 (2010): https://www.nature.com/articles/nnano.2010.65

Lohmann, F., Weigandt, J., Valero, J., & Famulok, M. Angew. Chem. Int. Ed. Engl. 53, 10372–10376 (2014): https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201405447

Valero, J. Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. Nat. Nanotechnol. 13, 496–503 (2018): https://www.nature.com/articles/s41565-018-0109-z

Supplementary Information

Supplementary Information

Supplementary Figures 1–25 and Supplementary Tables 1–20

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valero, J., Centola, M., Ma, Y. et al. Design, assembly, characterization, and operation of double-stranded interlocked DNA nanostructures. Nat Protoc 14, 2818–2855 (2019). https://doi.org/10.1038/s41596-019-0198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0198-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing