Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cell cycle in stem cell proliferation, pluripotency and differentiation

Abstract

Cyclins, cyclin-dependent kinases and other components of the core cell cycle machinery drive cell division. Growing evidence indicates that this machinery operates in a distinct fashion in some mammalian stem cell types, such as pluripotent embryonic stem cells. In this Review, we discuss our current knowledge of how cell cycle proteins mechanistically link cell proliferation, pluripotency and cell fate specification. We focus on embryonic stem cells, induced pluripotent stem cells and embryonic neural stem/progenitor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of the cell cycle in somatic cells (MEFs) and in different types of ESCs.
Fig. 2: The cell cycle in somatic reprogramming and pluripotency maintenance.
Fig. 3: The cell cycle during dissolution of pluripotency and cell differentiation.
Fig. 4: The cell cycle in neurogenesis.

Similar content being viewed by others

References

  1. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Morgan, D. O. The Cell Cycle: Principles of Control (OUP/New Science Press, London, 2007).

  4. Satyanarayana, A. & Kaldis, P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925–2939 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Sherr, C. J. Growth factor-regulated G1 cyclins. Stem Cells 12, 47–55 (1994).

    PubMed  Google Scholar 

  6. Geng, Y. et al. Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hwang, H. C. & Clurman, B. E. Cyclin E in normal and neoplastic cell cycles. Oncogene 24, 2776–2786 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Narasimha, A. M. et al. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 3, e02872 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  9. Cappell, S. D., Chung, M., Jaimovich, A., Spencer, S. L. & Meyer, T. Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell 166, 167–180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manchado, E., Eguren, M. & Malumbres, M. The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem. Soc. Trans. 38, 65–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12, 427–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Heller, R. C. et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter, J. C. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J. Biol. Chem. 275, 39773–39778 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavet, O. & Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell 18, 533–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boward, B., Wu, T. & Dalton, S. Concise review: control of cell fate through cell cycle and pluripotency networks. Stem Cells 34, 1427–1436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  18. Snow, M. H. L. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42, 293–303 (1977).

    Google Scholar 

  19. Dalton, S. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 25, 592–600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stead, E. et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21, 8320–8333 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Solter, D., Skreb, N. & Damjanov, I. Cell cycle analysis in the mouse EGG-cylinder. Exp. Cell Res. 64, 331–334 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, R. K. & Johnson, M. H. Analysis of the third and fourth cell cycles of mouse early development. J. Reprod. Fertil. 76, 393–399 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Savatier, P., Huang, S., Szekely, L., Wiman, K. G. & Samarut, J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9, 809–818 (1994).

    CAS  PubMed  Google Scholar 

  24. Coronado, D. et al. A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency. Stem Cell Res. 10, 118–131 (2013).

    Article  PubMed  Google Scholar 

  25. Liu, L. et al. G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat. Cell Biol. 19, 177–188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujii-Yamamoto, H., Kim, J. M., Arai, K. & Masai, H. Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J. Biol. Chem. 280, 12976–12987 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X. Q. et al. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ. 24, 38–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. White, J. et al. Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol. Biol. Cell 16, 2018–2027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bar-On, O., Shapira, M., Skorecki, K., Hershko, A. & Hershko, D. D. Regulation of APC/C (Cdh1) ubiquitin ligase in differentiation of human embryonic stem cells. Cell Cycle 9, 1986–1989 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Ballabeni, A. et al. Cell cycle adaptations of embryonic stem cells. Proc. Natl Acad. Sci. USA 108, 19252–19257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Savatier, P., Lapillonne, H., van Grunsven, L. A., Rudkin, B. B. & Samarut, J. Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12, 309–322 (1996).

    CAS  PubMed  Google Scholar 

  32. Wianny, F. et al. G1-phase regulators, cyclin D1, cyclin D2, and cyclin D3: up-regulation at gastrulation and dynamic expression during neurulation. Dev. Dyn. 212, 49–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Faast, R. et al. Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 23, 491–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Fluckiger, A. C. et al. Cell cycle features of primate embryonic stem cells. Stem Cells 24, 547–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ter Huurne, M., Chappell, J., Dalton, S. & Stunnenberg, H. G. Distinct cell-cycle control in two different states of mouse pluripotency. Cell Stem Cell 21, 449–455.e4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Neganova, I., Zhang, X., Atkinson, S. & Lako, M. Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene 28, 20–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Becker, K. A. et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209, 883–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Conklin, J. F., Baker, J. & Sage, J. The RB family is required for the self-renewal and survival of human embryonic stem cells. Nat. Commun. 3, 1244 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Filipczyk, A. A., Laslett, A. L., Mummery, C. & Pera, M. F. Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Res. 1, 45–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Gonzales, K. A. et al. Deterministic restriction on pluripotent state dissolution by cell-cycle pathways. Cell 162, 564–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, W. W. et al. Cdk1 is required for the self-renewal of mouse embryonic stem cells. J. Cell. Biochem. 112, 942–948 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Neganova, I. et al. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. Cell Death Dis. 5, e1508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huskey, N. E. et al. CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively kills embryonic stem cells, and prevents teratoma formation. Stem Cell Reports 4, 374–389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, H. J. et al. Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Res. 46, 6544–6560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352–365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X. et al. A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J. Cell Biol. 184, 67–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J., Go, Y., Kang, I., Han, Y. M. & Kim, J. Oct-4 controls cell-cycle progression of embryonic stem cells. Biochem. J. 426, 171–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, R. et al. A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proc. Natl Acad. Sci. USA 111, 15768–15773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kareta, M. S., Sage, J. & Wernig, M. Crosstalk between stem cell and cell cycle machineries. Curr. Opin. Cell Biol. 37, 68–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Varlakhanova, N. V. et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Front. Biosci. 3, d250–d268 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Becker, K. A., Stein, J. L., Lian, J. B., van Wijnen, A. J. & Stein, G. S. Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming. J. Cell. Physiol. 222, 103–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sela, Y., Molotski, N., Golan, S., Itskovitz-Eldor, J. & Soen, Y. Human embryonic stem cells exhibit increased propensity to differentiate during the G1 phase prior to phosphorylation of retinoblastoma protein. Stem Cells 30, 1097–1108 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Calder, A. et al. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev. 22, 279–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Singh, A. M. et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports 1, 532–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh, A. M. et al. Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency. Stem Cell Reports 5, 323–336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lange, C. & Calegari, F. Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9, 1893–1900 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Singh, A. M. & Dalton, S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5, 141–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 155, 135–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pauklin, S., Madrigal, P., Bertero, A. & Vallier, L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev. 30, 421–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bienvenu, F. et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463, 374–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Casimiro, M. C. et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J. Clin. Invest. 122, 833–843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sicinski, P. et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Artegiani, B., Lindemann, D. & Calegari, F. Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. J. Exp. Med. 208, 937–948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pilaz, L. J. et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA 106, 21924–21929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lim, S. & Kaldis, P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells 30, 1509–1520 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Roccio, M. et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development 140, 459–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Van Oudenhove, J. J. et al. Lineage-specific early differentiation of human embryonic stem cells requires a G2 cell cycle pause. Stem Cells 34, 1765–1775 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. Otto, T. & Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Cacchiarelli, D. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162, 412–424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, S. et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruiz, S. et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr. Biol. 21, 45–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Edel, M. J. et al. Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes Dev. 24, 561–573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Utikal, J. et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145–1148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ouyang, J. et al. Cyclin-dependent kinase-mediated Sox2 phosphorylation enhances the ability of Sox2 to establish the pluripotent state. J. Biol. Chem. 290, 22782–22794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tanabe, K., Nakamura, M., Narita, M., Takahashi, K. & Yamanaka, S. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc. Natl Acad. Sci. USA 110, 12172–12179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kareta, M. S. et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16, 39–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ghule, P. N. et al. Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J. Cell. Physiol. 226, 1149–1156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Salomoni, P. & Calegari, F. Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol. 20, 233–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Caviness, V. S. Jr., Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Furutachi, S. et al. Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat. Neurosci. 18, 657–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).

    Article  PubMed  CAS  Google Scholar 

  103. Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lim, S. et al. Cyclin-Dependent Kinase-Dependent Phosphorylation of Sox2 at Serine 39 Regulates Neurogenesis. Mol. Cell. Biol. 37, e00201-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ali, F. et al. Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development 138, 4267–4277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lacomme, M., Liaubet, L., Pituello, F. & Bel-Vialar, S. NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol. Cell. Biol. 32, 2596–2607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lukaszewicz, A. I. & Anderson, D. J. Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proc. Natl Acad. Sci. USA 108, 11632–11637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nguyen, L. et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev. 20, 1511–1524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Joseph, B. et al. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 16, 1256–1265 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Vanderluit, J. L. et al. p107 regulates neural precursor cells in the mammalian brain. J. Cell Biol. 166, 853–863 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferguson, K. L. et al. A cell-autonomous requirement for the cell cycle regulatory protein, Rb, in neuronal migration. EMBO J. 24, 4381–4391 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Godin, J. D. et al. p27(Kip1) is a microtubule-associated protein that promotes microtubule polymerization during neuron migration. Dev. Cell 23, 729–744 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Itoh, Y., Masuyama, N., Nakayama, K., Nakayama, K. I. & Gotoh, Y. The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. J. Biol. Chem. 282, 390–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat. Cell Biol. 8, 17–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kawauchi, T., Shikanai, M. & Kosodo, Y. Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes Cells 18, 176–194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McClellan, K. A. et al. Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle-independent functions. Mol. Cell. Biol. 27, 4825–4843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cheng, T., Rodrigues, N., Dombkowski, D., Stier, S. & Scadden, D. T. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat. Med. 6, 1235–1240 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Furutachi, S., Matsumoto, A., Nakayama, K. I. & Gotoh, Y. p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 32, 970–981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Matsumoto, A. et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9, 262–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yuan, Y., Shen, H., Franklin, D. S., Scadden, D. T. & Cheng, T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat. Cell Biol. 6, 436–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. van Velthoven, C. T. J. & Rando, T. A. Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell 24, 213–225 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Barakat, T. S. et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23, 276–288.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hnisz, D., Day, D. S. & Young, R. A. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167, 1188–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ji, X. et al. 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18, 262–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Kishi, Y. & Gotoh, Y. Regulation of chromatin structure during neural development. Front. Neurosci. 12, 874 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cappell, S. D. et al. EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle. Nature 558, 313–317 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Spencer, S. L. et al. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Guo, H. et al. Single-cell RNA sequencing of human embryonic stem cell differentiation delineates adverse effects of nicotine on embryonic development. Stem Cell Reports 12, 772–786 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao, T. et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 23, 31–45.e37 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Bragado Alonso, S. et al. An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO J. 38, e98791 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Azzarelli, R. et al. Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation. Dev. Cell 41, 274–286.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01CA202634 (to P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Sicinski.

Ethics declarations

Competing interests

P.S. has been a consultant at Novartis, Genovis, Guidepoint, The Planning Shop, ORIC Pharmaceuticals and Exo Therapeutics; his laboratory receives research funding from Novartis. W.M. is currently an employee of Cedilla Therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Michowski, W., Kolodziejczyk, A. et al. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol 21, 1060–1067 (2019). https://doi.org/10.1038/s41556-019-0384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0384-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing