industry news
Subscribe Now

Rohde & Schwarz together with Fraunhofer Institutes HHI and IAF join forces in researching 6G at THz frequencies

While the new 5G technology is at the first stages of rollout, Rohde & Schwarz, the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI and the Fraunhofer Institute for Applied Solid State Physics IAF are taking a step further with demonstrations in the terahertz (THz) frequency band, related to the 6th generation wireless mobile communication (6G). The collaboration has resulted in a wireless transmit and receive system operating between 270 and 320 GHz, with further frequency extensions for potential 6G bands already in preparation.

Munich, November 6, 2019 — 6G research is already underway in industry and academia. While 5G introduces mmWave frequencies with wider bandwidths for higher data rates and enables new applications such as in wireless factory automation (Industrial IoT) and for autonomous vehicles, the aim of 6G is to push the boundaries of transmission bandwidths even higher.

Although it is not clear yet which technologies 6G will entail, it is already apparent that frequency bandwidths need to be further increased to enable terabit class data rates. Wide contiguous frequency blocks can only be found at sub-THz and THz bands, i.e. in the frequency range above 100 GHz. The utilization of THz frequencies for 6G is estimated to become commercial in the next 8 to 10 years. But Rohde & Schwarz has already presented a demonstrator setup for 300 GHz to customers. The system was also displayed at the EuMW2019 in Paris as part of a workshop on mmWave and THz Wireless Communication, where it consisted of 300 GHz transceiver frontends, the R&S SMW200A vector signal generator and R&S FSW43 signal and spectrum analyzer as well as of units for synchronization of transmitter and receiver.

Involved in the current collaboration are the Fraunhofer HHI and the Fraunhofer IAF. The HHI works on signal processing, synchronization between transmitter and receiver, and system integration. The IAF contributes with high-performance millimeter-wave transmitter and receiver modules.  The joint research targets frequencies above 100 GHz, where the primary focus is on the D-band (150 GHz) and the H-band (300 GHz). Carrier frequencies above 300 GHz are still subject of fundamental research. A first demonstrator resulting from the research collaboration is a system allowing signal generation and signal analysis at 300 GHz with 2 GHz bandwidth. The signal can be arbitrary modulated for conducting transmission experiments with Beyond 5G candidate waveforms, which are appropriate for THz communication or for performing channel propagation measurements.

Dr. Taro Eichler, Wireless Market Segment Manager at Rohde & Schwarz, said, “Rohde & Schwarz offers innovative, top-of-the-line tools for research during the early stages of 6G development. This allows us to engage in in-depth discussions with customers and to monitor the technical and market trends long before the commercialization of 6G. We are excited to partner with Fraunhofer HHI and IAF, benefiting from their leading expertise in development of mobile communication networks and systems, infrastructure and standards. We look forward to a fruitful partnership also in the future.”

Dr. Wilhelm Keusgen, Head of mm-Wave Group at Fraunhofer HHI, said, “As an institution committed to leveraging innovations for the digital society, Fraunhofer HHI is happy to partner with an innovative industry-leading T&M expert such as Rohde & Schwarz on the latest and upcoming communications technologies. Our cooperation has been rewarding and will pave the way for the development of 6G.”

Dr. Michael Schlechtweg, Head of Business Unit High Frequency Electronics at Fraunhofer IAF, said, “As one of the first global providers of chipsets and electronic components capable of reaching already now the high frequencies required by 6G, we are collaborating with valued partner Rohde & Schwarz at the very cutting edge of technology. IAF appreciates the mutually highly beneficial cooperation and is happy to continue exploring new innovations with Rohde & Schwarz.”

Rohde & Schwarz builds its 6G research on a solid background of mobile communications test and measurement expertise, stretching from the early stages of 2G all the way up to and including 5G and beyond. Pioneering activities beyond 5G have already started about a year ago, when Rohde & Schwarz set up the world’s first ultra-wideband channel sounder for mobile communications exceeding 100 GHz: https://www.rohde-schwarz.com/_229356-596500.html

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
11,408 views