Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The art and design of genetic screens: maize

Key Points

  • Genetic screens in maize (Zea mays) are used to great effect to uncover genes for important developmental, agronomic and evolutionary traits. These screens have informed our understanding of maize as well as other cereal crops.

  • Both chemical mutagenesis (mainly ethyl methanesulphonate (EMS)) and transposons provide useful material for forward screens; the diversity of maize inbred lines are also exploited to associate unique alleles with phenotypes.

  • The physical separation of the male and female flowers facilitates crosses in maize. Another practical advantage is the availability of many traits, such as kernel colour, that can be easily scored and quantified.

  • The many chromosome translocation stocks that exist for maize can be used to map recessive mutations, carry out dosage analysis of dominant mutations and identify gametophytic mutations.

  • Although genome sizes vary considerably in grass species, gene order is often conserved. This property facilitates the cloning of maize genes using the genome sequences that are available for other cereals such as sorghum and rice.

  • EMS mutagenesis is carried out in the pollen, which has a vegetative cell and two sperm cells.

  • Three main families of endogenous transposable elements have been used for gene tagging in maize. These are the Activator (Ac) and its nonautonomous derivative Dissociation (Ds), Suppressor–mutator (Spm), and Mutator (Mu) transposon families, the last being the most popular choice owing to its higher mutation rate.

  • The propensity for linked transpositions makes the Ac/Ds transposon family useful for regional mutagenesis.

  • The high copy number makes Mutator elements useful for forward and reverse genetics.

  • Reverse genetic resources rely on endogenous transposons and TILLING (targeting induced local lesions in genomes).

  • The rich natural allelic variation of maize is being exploited to identify genes for important traits. Association analysis takes advantage of a large number of maize inbreds that have been evaluated phenotypically for many traits. A collection of 5,000 recombinant inbred lines that uses one common parent crossed to 25 diverse inbreds has the potential to fine map genetic variation to a single gene.

  • Once the maize genome sequence is made available in 2008, it will make it easier for researchers to use genetic screens in maize.

Abstract

Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways — not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible in this organism, and emphasize the available tools. Screens exploit the well-studied behaviour of transposon systems, and the distinctive chromosomes allow an integration of cytogenetics into mutagenesis screens and analyses. The imminent completion of the maize genome sequence provides the essential resource to move seamlessly from gene to phenotype and back.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy and life cycle of maize.
Figure 2: Ethyl methanesulphonate mutagenesis screens.
Figure 3: Generation and selection of transposed Activator elements.
Figure 4: Intermated recombinant inbred lines.

Similar content being viewed by others

References

  1. Coe, E. H. J. The origins of maize genetics. Nature Rev. Genet. 2, 898–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K. & Kyozuka, J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130, 3841–3850 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Banks, J. A., Masson, P. & Fedoroff, N. Molecular mechanisms in the developmental regulation of the maize Suppressormutator transposable element. Genes Dev. 2, 1364–1380 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Martienssen, R., Barkan, A., Taylor, W. C. & Freeling, M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev. 4, 331–343 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Woodhouse, M. R., Freeling, M. & Lisch, D. The mop 1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172, 579–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeLong, A., Calderon-Urrea, A. & Dellaporta, S. L. Sex determination gene tasselseed2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757–768 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Chuck, G., Meeley, R., Irish, E., Sakai, H. & Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting tasselseed6/indeterminate spikelet1. Nature Genet. 12, 1517–1521 (2007).

    Article  CAS  Google Scholar 

  8. Vollbrecht, E. & Hake, S. Deficiency analysis of female gametogenesis in maize. Developmental Genetics 16, 44–63 (1995). This paper takes advantage of reciprocal translocations to identify the regions of the genome that are required for female gametogenesis.

    Article  Google Scholar 

  9. Dooner, H. K., Robbins, T. P. & Jorgensen, R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25, 173–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Laughnan, J. R. The effect of the sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics 38, 485–499 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tracy, W. F. History, genetics, and breeding of supersweet (shrunken2) sweetcorn Plant Breed Rev. 14, 189–236 (1997).

    Google Scholar 

  12. Mertz, E. T., Bates, L. S. & Nelson, E. Z. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145, 279–280 (1964).

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, E. Z., Mertz, E. T. & Bates, L. S. Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150, 1469–1470 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. Neuffer, M. G. & Sheridan, W. F. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95, 929–944 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Neuffer, M. G., Chang, M. P., Chang, M., Clark, J. K. & Sheridan, W. F. in Regulation of Carbon and Nitrogen Reduction and Utilization in Maize (eds Shannon, J. C., Knievel, D. P & Boyer, C. D.) 35–50 (Amer. Soc. Plant Physiologists, Rockville, Maryland, 1986).

    Google Scholar 

  16. Scanlon, M. J., Stinard, P. S., James, M. G., Myers, A. M. & Robertson, D. S. Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics 136, 281–294 (1994). This paper identifies a large collection of defective kernel mutations and assigns many of them to chromosomes using B–A translocations.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stern, D. B., Hanson, M. R. & Barkan, A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci. 9, 293–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hulbert, S. H., Richter, T. E., Axtell, J. D. & Bennetzen, J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl Acad. Sci. USA 87, 4251–4255 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berhan, A. M., Hulbert, S. H., Butler, L. G. & Bennetzen, J. L. Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor. Appl. Genet. 86, 598–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768 (1996). This is one of the first papers to show that most of the maize genome consists of retrotransposons.

    Article  CAS  PubMed  Google Scholar 

  22. SanMiguel, P. & Bennetzen, J. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82, 37–44 (1998).

    Article  CAS  Google Scholar 

  23. Fu, H. & Dooner, H. K. Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl Acad. Sci. USA 99, 9573–9578 (2002). This paper finds that the intergenic space in different inbred lines is extremely divergent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brunner, S., Fengler, K., Morgante, M., Tingey, S. & Rafalski, A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaut, B. S. & Doebley, J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl Acad. Sci. USA 94, 6809–6814 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wright, A. D., Moehlenkamp, C. A., Perrot, G. H., Neuffer, M. G. & Cone, K. C. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase β. Plant Cell 4, 711–719 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nardmann, J., Ji, J., Werr, W. & Scanlon, M. J. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827–2839 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lai, J. et al. Gene loss and movement in the maize genome. Genome Res. 14, 1924–1931 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chandler, V. L., Radicella, J. P., Robbins, T. R., Chen., J. & Turks, D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell 1, 1175–1183 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Birchler, J. A., Dawe, R. K. & Doebley, J. F. Marcus Rhoades, preferential segregation and meiotic drive. Genetics 164, 835–841 (2003).

    PubMed  PubMed Central  Google Scholar 

  31. Wang, C. J., Harper, L. & Cande, W. Z. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18, 529–544 (2006). This study shows the potential of high-resolution fluorescence in-situ hybridization for localizing genes to chromosomes. This technique will be helpful to determine the size of the gaps in the genome sequence, and to integrate available genetic and cytogenetic maps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laughnan, J. R. & Gabay-Laughnan, S. in The Maize Handbook (eds Freeling, M. & Walbot, V.) 254–257 (Springer, New York, 1993).

    Google Scholar 

  33. Beckett, J. B. in The Maize Handbook (eds Freeling, M. & Walbot, V.) 315–327 (Springer, New York, 1993).

    Google Scholar 

  34. Neuffer, M. G. in The Maize Handbook (eds Freeling, M. & Walbot, V.) 212–219 (Springer, New York, 1993).

    Google Scholar 

  35. Neuffer, M. G. in Maize for Biological Research (ed. Sheridan, W. F.) 61–64 (Plant Mol. Biol. Assoc., Charlottesville, Virginia, 1982).

    Google Scholar 

  36. Lee, W. R., Sega, G. A. & Bishop, J. B. Chemically induced mutations observed as mosaics in Drosophila melanogaster. Mutat. Res. 9, 323–336 (1970).

    Article  CAS  PubMed  Google Scholar 

  37. Bird, R. M. & Neuffer, M. G. Chimeral dominants in the M1 from an EMS treatment. Maize Genet. Coop. News Lett. 57, 30–31 (1983).

    Google Scholar 

  38. Vollbrecht, E., Veit, B., Sinha, N. & Hake, S. The developmental gene knotted1 is a member of a maize homeobox gene family. Nature 350, 241–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Kerstetter, R. A., Laudencia-Chingcuanco, D., Smith, L. G. & Hake, S. Loss of function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124, 3045–3054 (1997).

    CAS  PubMed  Google Scholar 

  40. Till, B. J. et al. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 4, 12 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weil, C. F. & Monde, R. A. Getting the point — mutations in maize. Crop Science 47, S60–S67 (2007).

    Article  CAS  Google Scholar 

  42. Rhoades, M. M. Duplicate genes in maize. American Naturalist 85, 105–110 (1951).

    Article  Google Scholar 

  43. Bortiri, E., Jackson, D. & Hake, S. Advances in maize genomics: the emergence of positional cloning. Curr. Opin. Plant Biol. 9, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Vollbrecht, E., Springer, P. S., Goh, L., Buckler, E. S. T. & Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 436, 1119–1126 (2005). This paper identifies the ramosa1 gene by using transposon tagging. The gene is needed for the development of spikelet pairs and is not found in the rice genome.

    Article  CAS  PubMed  Google Scholar 

  45. Baker, B., Coupland, G., Fedoroff, N., Starlinger, P. & Schell, J. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 6, 1547–1554 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardon, G. H., Frey, M., Saedler, H. & Gierl, A. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3, 773–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Fedoroff, N., Wessler, S. & Shure, M. Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Van Schaik, N. W. & Brink, R. A. Transpositions of modulator, a component of the variegated pericarp allele in maize. Genetics 44, 725–738 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dooner, H. K. & Belachew, A. Transposition pattern of the maize element Ac from the Bz-M2 (Ac) allele. Genetics 122, 447–457 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cowperthwaite, M. et al. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14, 713–726 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bai, L., Singh, M., Pitt, L., Sweeney, M. & Brutnell, T. P. Generating novel allelic variation through Activator insertional mutagenesis in maize. Genetics 175, 981–992 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alleman, M. & Kermicle, J. L. Somatic variegation and germinal mutability reflect the position of transposable element dissociation within the maize R gene. Genetics 135, 189–203 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Athma, P., Grotewold, E. & Peterson, T. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131, 199–209 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moreno, M. A., Chen, J., Greenblatt, I. & Dellaporta, S. L. Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics 131, 939–956 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kolkman, J. M. et al. Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169, 981–995 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McClintock, B. Chromosome organization and gene expression. Cold Spring Harb. Symp. Quant. Biol. 16, 13–47 (1951).

    Article  CAS  PubMed  Google Scholar 

  57. Brutnell, T. P. & Conrad, L. J. Transposon tagging using Activator (Ac) in maize. Methods Mol. Biol. 236, 157–176 (2003).

    CAS  PubMed  Google Scholar 

  58. Conrad, L. J. & Brutnell, T. P. Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize. Genetics 171, 1999–2012 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lisch, D. Mutator transposons. Trends Plant Sci. 7, 498–504 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Walbot, V. Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 49–82 (1992).

    Article  CAS  Google Scholar 

  61. Bennetzen, J. L. The Mutator transposable element system of maize. Curr. Top. Microbiol. Immunol. 204, 195–229 (1996).

    CAS  PubMed  Google Scholar 

  62. Raizada, M. N., Nan, G. L. & Walbot, V. Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13, 1587–1608 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lisch, D., Chomet, P. & Freeling, M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139, 1777–1796 (1995). This paper and others by the same laboratory take advantage of a Mu line that only contains one transposase-encoding element and one responding element. The authors show that Mu elements do not transpose to unlinked sites and that element mobilization is affected by position effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bortiri, E. et al. ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18, 574–585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slotkin, R. K., Freeling, M. & Lisch, D. Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165, 781–797 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Slotkin, R. K., Freeling, M. & Lisch, D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nature Genet. 37, 641–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Edwards, D., Coghill, J., Batley, J., Holdsworth, M. & Edwards, K. J. Amplification and detection of transposon insertion flanking sequences using fluorescent MuAFLP. Biotechniques 32, 1090–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Settles, A. M., Latshaw, S. & McCarty, D. R. Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res. 32, e54 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanley, S. et al. Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J. 23, 557–566 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Fernandes, J. et al. Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biology 5, R82 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  71. McCarty, D. R. et al. Steady-state transposon mutagenesis in inbred maize. Plant J. 44, 52–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Settles, A. M. et al. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8, 116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. May, B. P. et al. Maize-targeted mutagenesis: A knockout resource for maize. Proc. Natl Acad. Sci. USA 100, 11541–11546 (2003). This paper shows that the MTM system takes advantage of the high levels of Mu activity to generate a collection of insertions that is useful for reverse genetics screens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bensen, R. J. et al. Cloning and characterization of the maize An1 gene. Plant Cell 7, 75–84 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edwards, D. et al. Identification of transposon-tagged maize genes displaying homology to arrayed cDNA clones with the use of Mutator insertion display. Genome Lett. 1, 48–55 (2002).

    Article  CAS  Google Scholar 

  76. Wenting, L., Youjun, G., Feng, T., Qing, S. & Yonglian, Z. Construction and genetic analysis of Mutator insertion mutant population in maize. Chin. Sci. Bull. 51, 2604–2610 (2006).

    Article  CAS  Google Scholar 

  77. McClintock, B. Mutations in maize and chromosomal observations in Neurospora. Carnegie Inst. Washington Yearbook 53, 254–260 (1954).

    Google Scholar 

  78. Peterson, P. A. A mutable pale green locus in maize. Genetics 38, 682–683 (1953).

    Google Scholar 

  79. Gierl, A. & Saedler, H. The En/Spm transposable element of Zea mays. Plant Mol. Biol. 13, 261–266 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt, R. J., Burr, F. A. & Burr, B. Transposon tagging and molecular analysis of the maize regulatory locus opaque2. Science 238, 960–963 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Schiefelbein, J. W., Raboy, V., Fedoroff, N. V. & Nelson, O. E. J. Deletions within a defective Suppressor–Mutator element in maize affect the frequency and developmental timing of its excision from the bronze locus. Proc. Natl Acad. Sci. USA 82, 4783–4787 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao, W. et al. Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res. 34, D752–D757 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Tenaillon, M. I. et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl Acad. Sci. USA 98, 9161–9166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flint-Garcia, S. A. et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054–1064 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Buckler, E. & Thornsberry, J. Plant molecular diversity and applications to genomics. Curr. Opin. Plant Biol. 5, 107–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Whitt, S. R. & Buckler, E. S. Using natural allelic diversity to evaluate gene function. Methods Mol. Biol. 236, 123–140 (2003).

    CAS  PubMed  Google Scholar 

  87. Wilson, L. et al. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16, 2719–2733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, M. et al. Expanding the genetic map of maize with the intermated B73xMo17 (IBM) population. Plant Mol. Biol. 48, 453–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Sharopova, N. et al. Development and mapping of SSR markers for maize. Plant Mol. Biol. 48, 463–481 (2002). This article and others by the same laboratory take advantage of the sequence polymorphism in diverse maize stocks to carry out association analyses.

    Article  CAS  PubMed  Google Scholar 

  90. Fu, Y. et al. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174, 1671–1683 (2006). This paper describes a recombinant inbred population that has high resolution owing to intermating prior to selfing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Balint-Kurti, P. J. et al. Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176, 645–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, J. M. & Buckler, E. S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotech. 17, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Comai, L. et al. Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING. Plant J. 37, 778–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Till, B. J., Zerr, T., Comai, L., Henikoff, S. A protocol for TILLING and EcoTILLING in plants and animals. Nature Protoc. 1, 2465–2477 (2006).

    Article  CAS  Google Scholar 

  95. Harjes, C. E. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wong, J. C., Lambert, R. J., Wurtzel, E. T. & Rocheford, T. R. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108, 349–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Singleton, W. R. & Mangelsdorf, P. C. Gametic lethals on the fourth chromosome of maize. Genetics 25, 366–390 (1940).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Birchler, J. A. & Levin, D. M. Directed synthesis of a segmental chromosomal transposition: an approach to the study of chromosomes lethal to the gametophyte generation of maize. Genetics 127, 609–618 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vollbrecht, E. W. Developmental genetics of female gametophyte function in Zea mays. Thesis, Univ. California, Berkeley (1997).

    Google Scholar 

  100. Hollick, J. B. & Chandler, V. L. Genetic factors required to maintain repression of a paramutagenic maize pl1 allele. Genetics 157, 369–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hale, C. J., Stonaker, J. L., Gross, S. M. & Hollick, J. B. A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize. PLoS Biology 5, e275 (2007). This paper describes the positional cloning of rmr1 , which is needed to maintain paramutation. The gene encodes a protein that is likely to be involved in chromatin remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dorweiler, J. E. et al. mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12, 2101–2118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Woodhouse, M. R., Freeling, M. & Lisch, D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 4, e339 (2006). References 103 and 104 are important papers for improving our understanding of the regulation of chromatin and are excellent examples of the use of genetic screens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hollick, J. B., Patterson, G. I., Coe, E. H. J., Cone, K. C. & Chandler, V. L. Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics 141, 709–719 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hollick, J. B. & Chandler, V. L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics 150, 891–897 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gross, S. M. & Hollick, J. B. Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus. Genetics 176, 829–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Steffensen, D. M. A reconstruction of cell development in the shoot apex of maize. Am. J. Bot. 55, 354–369 (1968).

    Article  Google Scholar 

  109. Baker, R. F. & Braun, D. M. tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves. Plant Physiol. 144, 867–878 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Neuffer, M. G. Chromosome breaking sites for genetic anlaysis in maize. Maydica 40, 99–116 (1995).

    Google Scholar 

  111. Becraft, P. W., Li, K., Dey, N. & Asuncion-Crabb, Y. The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development 129, 5217–5225 (2002).

    CAS  PubMed  Google Scholar 

  112. Fu, S. & Scanlon, M. J. Clonal mosaic analysis of empty pericarp2 reveals nonredundant functions of the duplicated heat shock factor binding proteins during maize shoot development. Genetics 167, 1381–1394 (2004). This paper is a good example of the use of mosaic analysis to examine the function, in adult tissues, of genes that are essential for the embryo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McCormick, S. Control of male gametophyte development. Plant Cell 16, S142–S153 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Randolph, L. F. Developmental morphology of the caryopsis in maize. J. Agric. Res. 53, 881–916 (1936).

    Google Scholar 

  116. Huang, B.-Q. & Sheridan, W. F. Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6, 845–861 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Walbot, V. & Evans, M. M. Unique features of the plant life cycle and their consequences. Nature Rev. Genet. 4, 369–379 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. G. Neuffer for his inspiration. We thank E. Vollbrecht for comments and for allowing us to reference his unpublished work. H. C. and S. H. are supported by the US Department of Agriculture, the Agricultural Research Service and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The Hake laboratory homepage

Functional Genomics of Maize Endosperm

Maize Genetic Mapping Project

Maize Genetics and Diversity

Maize Genetics and Genomics Database (MaizeGDB)

Maize Genetics Cooperation Stock Center (MGCSC)

Maize Inflorescence Architecture Project — EMS Phenotype Database

Maize Targeted Mutagenesis (MTM)

Maize TILLING Project

Mu killer

Mu Transposon Information Resource

Nature Reviews Genetics series on 'The art and design of genetic screens'

Panzea – Molecular and Functional Diversity of the Maize Genome

Photosynthetic Mutant Library

PlantGDB Ac/Ds resources

Plant Genome Database (PlantGDB)

Projects at PlantGDB

Regional Mutagenesis Utilizing Activator (Ac) in Maize

RescueMu collection of insertional mutants at MaizeGDB

Rice genome sequence at TIGR

Sorghum genome sequence at Phytozome

The Maize Genome Sequencing Project

UniformMu Maize Project

Glossary

Teosinte

The name given to several wild subspecies of maize, including the ones from which cultivated varieties were domesticated.

Tassel

The inflorescence that carries the male flowers. It is located at the top of the plant and develops from the shoot apical meristem after all vegetative leaves are produced.

Ear

The inflorescence that carries the female flowers. Ears are modified branches located in the axil of vegetative leaves.

Pericarp

The maternally derived outer layer of the kernel.

Retrotransposons

Transposable elements that transpose via an rna intermediate.

Anthers

The organs of a flower in which pollen grains are produced.

Chromosome knobs

Cytogenetically defined heterochromatic regions that are visible in a stained pachytene chromosome.

Hyperploid

The property of having more genetic material (either a chromosome or segment of chromosome) than the diploid. By contrast, a hypoploid has less genetic material than the diploid.

Accessions

Each of the strains in a collection of germplasm.

Silks

The styles of the maize female flowers. Pollen germinates on silks and grows through them to reach the ovule.

Non-complementation screen

A mutant search that is used to identify additional recessive mutations of a given gene. In maize, ears from a known loss-of-function mutant are pollinated with mutagenized pollen, and the F1 is screened for mutant phenotypes. Apart from rare exceptions (known as non-allelic non-complementation), these are only expected to occur when both the new and the known mutations affect the same gene (that is, they do not complement).

Segregation distortion

Deviation from the expected Mendelian ratios.

Suppressor screen

A screen aimed at identifying mutations that alleviate the phenotype of an existing mutation, often resulting in a 'normal' appearance.

Gene tagging

Obtaining a transposon insertion into a gene.

Acentric

Fragment of a chromosome missing the centromere.

Meristem

A group of totipotent cells at the growing tip of a shoot or root. Leaves initiate from the shoot meristem.

Allelic series

A collection of alleles of a gene, often differing in the level of gene activity.

Thermal asymmetric interlaced PCR

(TAIL-PCR). A technique based on the polymerase chain reaction that allows the amplification of genomic sequences adjacent to an insertion. It is based on the combined use of nested primers that are specific to a known inserted sequence together with other shorter, degenerate primers.

Introgressed

Introgression is the replacement of the genome of one strain with that of another, usually by repeated backcrossing, with the purpose of making them isogenic. Introgressed lines allow researchers to discern the phenotypic effects of a mutation from the effects of other unlinked loci.

Plasmid rescue

A technique that allows the recovery of the genomic sequence that is adjacent to an insertion. Genomic DNA from an individual carrying the insertion is digested with a restriction endonuclease, and the resulting restriction fragments are circularized (self-ligated) and transformed into competent bacteria. Recovery of the flanking sequences is made possible by the presence of a plasmid replication origin and a selectable marker in the inserted sequence.

Land races

Varieties of maize that, in contrast to the inbred lines, have traditionally been propagated by open pollination.

Recombinant inbred line

(RIL). A homozygous plant line obtained after crossing two distinct parental accessions and subsequent inbreeding over several generations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, H., Hake, S. The art and design of genetic screens: maize. Nat Rev Genet 9, 192–203 (2008). https://doi.org/10.1038/nrg2291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing