Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Nanoscale compositional mapping with gentle forces

Abstract

Microscopists have always pursued the development of an instrument that combines topography and materials properties analyses at the highest resolution. The measurement of the tiny amount of energy dissipated by a vibrating tip in the proximity of the sample surface has provided atomic force microscopes with a robust and versatile method to determine the morphology and the compositional variations of surfaces in their natural environment. Applications in biology, polymer science and microelectronics illustrate the potential of phase-imaging force microscopy for nanoscale analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introducing AM-AFM.
Figure 2: Energy dissipation curves.
Figure 3: AFM phase-imaging.
Figure 4: Complex microdomain structure of a block copolymer.
Figure 5: Real-time phase images of crystal twisting during the crystallization of a chiral random copolymer at 75 °C.

Similar content being viewed by others

References

  1. Jung, T. A., Himpsel, F. J., Schlittler, R. R. & Gimzewski, J. K. in Scanning Probe Microscopy (ed. Wiesendanger, R.) 11–48 (Springer, Berlin-Heidelberg 1998).

    Book  Google Scholar 

  2. Hillenbrand, R., Taubner, T. & Keilmann, F. Photon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  CAS  Google Scholar 

  3. Stroh, C. et al. Single-molecule recognition imaging-microscopy. Proc. Natl. Acad. Sci. USA 101, 12503–12505 (2004).

    Article  CAS  Google Scholar 

  4. Martinez, N. F., Patil, S., Lozano, J. R. & García, R. Enhanced compositional sensitivity in atomic force microscopy excitation of the first two flexural modes. Appl. Phys. Lett. 89, 153115 (2006).

    Article  Google Scholar 

  5. Meyer, E., Hug, H. J. & Bennewitz, R. Scanning Probe Microscopy: Lab on a Tip (Springer, Berlin, 2004).

    Book  Google Scholar 

  6. Morita, S., Wiesendanger, R. & Meyer, E. (eds) Noncontact Atomic Force Microscopy (Springer, Berlin, 2002).

    Book  Google Scholar 

  7. Jena, B. P. & Horber, J. K. H. Atomic Force Microscopy in Cell Biology (Academic Press, San Diego, 2002).

    Google Scholar 

  8. Garcia, R. & Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  CAS  Google Scholar 

  9. Klinov, D. & Magonov, S. True molecular resolution in tapping-mode atomic force microscopy. Appl. Phys. Lett. 84, 2697–2699 (2004).

    Article  CAS  Google Scholar 

  10. Chernoff, D. A. in Proc. Microscopy and Microanalysis (Bailey, G. W. et al. eds) 888–889 (Jones & Begell, New York, USA, 1995).

    Google Scholar 

  11. Tamayo, J. & García, R. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394–2396 (1997).

    Article  CAS  Google Scholar 

  12. Magonov, S. N., Elings, V. & Papkov, V. S. AFM study of thermotropic structural transitions in poly (diethylsiloxane). Polymer 38, 297–307 (1997).

    Article  CAS  Google Scholar 

  13. Rodriguez, T. R. & García, R. Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646–1648 (2002).

    Article  CAS  Google Scholar 

  14. Legleiter, J., Park, M., Cusik, B. & Kowalewski, T. Scanning probe acceleration microscopy in fluids: Mapping mechanical properties of surfaces at the nanoscale. Proc. Natl Acad. Sci. USA 103, 4813–4818 (2006).

    Article  CAS  Google Scholar 

  15. Hu, S. & Raman, A. Chaos in atomic force microscopy. Phys. Rev. Lett. 96, 036107 (2006).

    Article  Google Scholar 

  16. Lee, M. & Jhe, W. General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 97, 036104 (2006).

    Article  Google Scholar 

  17. SanPaulo, A. & García, R. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation force microscopy. Phys. Rev. B 64, 193411 (2001).

    Article  Google Scholar 

  18. Hölscher, H. Quantitative measurement of tip-sample interactions in amplitude modulation AFM. Appl. Phys. Lett. 89, 123109–123111 (2006).

    Article  Google Scholar 

  19. García, R. et al. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys. Rev. Lett. 97, 016103 (2006).

    Article  Google Scholar 

  20. Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K. & Yamada, H. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation AFM. Rev. Sci. Instrum. 76, 053704 (2005).

    Article  Google Scholar 

  21. Schäffer, T. E. Calculation of thermal noise in an atomic force microscope with a finite optical spot size. Nanotechnology 16, 664–670 (2005).

    Article  Google Scholar 

  22. Ando, T. et al. High-speed AFM for studying the dynamic behaviour of protein molecules at work. Jpn J. Appl. Phys. 45, 1897–1903 (2006).

    Article  CAS  Google Scholar 

  23. Humphris, A. D. L., Miles, M. J. & Hobbs, J. K. A mechanical microscope: High speed atomic force microscopy. Appl. Phys. Lett. 86, 034106 (2005).

    Article  Google Scholar 

  24. Hansma, P. K., Schitter, G., Fantner, G. E. & Prater C. High-speed atomic force microscopy. Science 314, 601–602 (2006).

    Article  CAS  Google Scholar 

  25. Thomson, N. H. The substructure of immunoglobulin G resolved to 25 kDA using amplitude modulation in air. Ultramicroscopy 105, 1003–110 (2005).

    Article  Google Scholar 

  26. Stark, M., Stark, R. W., Heckl, W. M. & Guckenberger, R. Inverting force microscopy: From signals to time-resolved interaction forces. Proc. Natl Acad. Sci. USA 99, 8473–8478 (2002).

    Article  CAS  Google Scholar 

  27. Kutana, A., Giapsis, K. P., Chen, J. Y. & Collier, C. P. Amplitude response of single-wall carbon nanotube probes during tapping mode atomic force microscopy: Modeling and experiment. Nano Lett. 6, 1669–1673 (2006).

    Article  CAS  Google Scholar 

  28. Balantekin, M. & Atalar, A. Power dissipation analysis in tapping-mode atomic force microscopy. Phys. Rev. B 67, 193404 (2003).

    Article  Google Scholar 

  29. Sahin, O., Quate, C. F., Solgaard, O. & Atalar, A. Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B 69, 165416 (2004).

    Article  Google Scholar 

  30. Martin, P., Marsaudon, S., Aimé, J. P. & Bennetau, B. Experimental determination of conservative and dissipative parts in the tapping mode on a grafted layer: comparison with frequency modulation data. Nanotechnology 16, 901–907 (2005).

    Article  Google Scholar 

  31. Cleveland, J. P., Anczykowski, B., Schmid, A. E. & Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998).

    Article  CAS  Google Scholar 

  32. Bar G et al. Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 13, 3807–3812 (1997).

    Article  CAS  Google Scholar 

  33. Anczykowski, B., Gotsman, B., Fuchs, H., Cleveland, J. P. & Elings, V. B. How to measure energy dissipation in dynamic mode atomic force microscopy. Appl. Surf. Sci. 140, 376–382 (1999).

    Article  CAS  Google Scholar 

  34. Stark, M., Möller, C., Müller, D. J. & Guckenberger, R. From images to interactions: High-resolution phase imaging in tapping-mode AFM. Biophys. J. 80, 3009–3018 (2001).

    Article  CAS  Google Scholar 

  35. D'Amato, M. J., Markus, M. S., Eriksson, M. A. & Carpick, R. W. Phase imaging and the lever-sample tilt in dynamic atomic force microscopy imaging. Appl. Phys. Lett. 85, 4738–4740 (2004).

    Article  CAS  Google Scholar 

  36. Bodiguel, H., Montes, H. & Fretigny, C. Depth sensing and dissipation in tapping mode atomic force microscopy. Rev. Sci. Instrum. 75, 2529–2535 (2004).

    Article  CAS  Google Scholar 

  37. Kasai, T, Bhushan, B., Huang, L, & Chanmin, S. Topography and phase imaging using torsional resonance mode. Nanotechnology 15, 731–742 (2004).

    Article  CAS  Google Scholar 

  38. Ashby, P. D. & Lieber, C. M. Ultra-sensitive imaging and interfacial analysis of patterned hydrophilic SAM surfaces using energy dissipation chemical force microscopy. J. Am. Chem. Soc. 127, 6814 (2005).

    Article  CAS  Google Scholar 

  39. Martinez, N. F. & García, R. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17, S167–S172 (2006).

    Article  CAS  Google Scholar 

  40. Xu, W. S., Wood-Adams, P. M. & Robertson, C. G. Measuring local viscoelastic properties of complex materials with tapping mode atomic force microscopy. Polymer 47, 4798–4810 (2006).

    Article  CAS  Google Scholar 

  41. Oyabu, N. et al. Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys. Rev. Lett. 96, 106101 (2006).

    Article  Google Scholar 

  42. Loppacher, C. et al. Experimental aspects of dissipation force microscopy. Phys. Rev. B 62, 13674–13679 (2000).

    Article  CAS  Google Scholar 

  43. Schirmeisen, A. & Hölscher, H. Velocity dependence of energy dissipation in dynamic force microscopy: Hysteresis versus viscous damping. Phys. Rev. B 72, 045431 (2005).

    Article  Google Scholar 

  44. Waigh, T. A. Microrheology of complex fluids, Rep. Prog. Phys. 68, 685–742 (2005).

    Article  Google Scholar 

  45. Gray, T. et al. Nanorheological approach for characterization of electroluminescent polymer thin films. Appl. Phys. Lett. 83, 2563–2565 (2003).

    Article  CAS  Google Scholar 

  46. Reiter, G., Castelein, G., Sommer, J. U., Röttele, A. & Thurn-Albrecht, T. Direct visualization of random crystallization and melting in arrays of nanometer-size polymer crystals. Phys. Rev. Lett. 87, 226101 (2001).

    Article  CAS  Google Scholar 

  47. Rehse, N., Marr, S., Scherdel, S. & Magerle, R. Three-dimensional imaging of semicrystalline polypropylene with 10 nm resolution. Adv. Mater. 17, 2203–2206 (2005).

    Article  CAS  Google Scholar 

  48. Wu, W., Matyjaszewski, K. & Kowalewski, T. Monitoring surface thermal transitions of ABA triblock copolymers with crystalline segments using phase contrast tapping mode atomic force microscopy. Langmuir 21, 1143–1148 (2005).

    Article  CAS  Google Scholar 

  49. Suo, Z. et al. HEPES-stabilized encapsulation of Salmonella typhimutium. Langmuir 23, 1365–1374 (2007).

    Article  CAS  Google Scholar 

  50. Goede, K., Busch, P. & Grundmann, M. Binding specifity of a peptide on semiconductor surfaces. Nano Lett. 4, 2115–2120 (2004).

    Article  CAS  Google Scholar 

  51. Checco, A., Cai, Y., Gang, O. & Ocko, B. M. High resolution non-contact AFM imaging of liquids onto chemically nanopatterned surfaces. Ultramicroscopy 106, 703–708 (2006).

    Article  CAS  Google Scholar 

  52. Lysetska M. et al. UV light-damaged DNA and its interaction with human replication protein A: an AFM study. Nucleic Acids Res. 30, 2686–2691 (2002).

    Article  CAS  Google Scholar 

  53. Uchihashi, T., Ando, T. & Yamashita, H. Fast phase imaging in liquids using a rapid scan atomic force microscope. Appl. Phys. Lett. 89, 213112 (2006).

    Article  Google Scholar 

  54. Knoll, A., Magerle R. & Krausch, G. Phase behaviour in thin films of cylinder-forming ABA block copolymers. J. Chem. Phys. 120, 1105–1116 (2004).

    Article  CAS  Google Scholar 

  55. Knoll, A. et al. Direct imaging and mesoscale modeling of phase transitions in a nanostructured fluid. Nature Mater. 3, 886–891 (2004).

    Article  CAS  Google Scholar 

  56. Hahm, J., Lopes, W. A., Jaeger, H. M. & Sibener, S. J. Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscopy. J. Chem. Phys. 109, 10111–10114 (1998).

    Article  CAS  Google Scholar 

  57. Harrison, C. et al. Mechanisms of ordering in striped patterns. Science 290, 1558–1561 (2000).

    Article  CAS  Google Scholar 

  58. Tsarkova, L., Knoll, A. & Magerle, R., Rapid transitions between defect configurations in a block copolymer melt. Nano Lett. 6, 1574–1577 (2006).

    Article  CAS  Google Scholar 

  59. Xu, J. et al. Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 37, 4118–4123 (2004).

    Article  CAS  Google Scholar 

  60. Tamayo, J. Energy dissipation in tapping-mode scanning for microscopy with low quality factors. Appl. Phys. Lett. 75, 3569–3571 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Commission (FORCETOOL, NMP4-CT-2004-013684).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, R., Magerle, R. & Perez, R. Nanoscale compositional mapping with gentle forces. Nature Mater 6, 405–411 (2007). https://doi.org/10.1038/nmat1925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing