Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films

Abstract

A critical parameter for the large-scale integration of solid-state batteries is to establish processing strategies to assemble battery materials at the lowest processing temperature possible while keeping lithium conduction up. Despite extensive research efforts, integrating ceramic film electrolytes while keeping a high lithium concentration and conduction at a low processing temperature remains challenging. Here, we report an alternative ceramic processing strategy through the evolution of multilayers establishing lithium reservoirs directly in lithium–garnet films that allow for lithiated and fast-conducting cubic solid-state battery electrolytes at unusually low processing temperatures. A lithium–garnet film processed via the multilayer processing approach exhibited the fastest ionic conductivity of 2.9 ± 0.05 × 10−5 S cm−1 (at room temperature) and the desired cubic phase, but was stabilized at a processing temperature lowered by 400 °C. This method enables future solid-state battery architectures with more room for cathode volumes by design, and reduces the processing temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental approach for thin-film deposition of Li–garnet.
Fig. 2: Merging of the multilayered structure.
Fig. 3: Negative-ion TOF-SIMS spectrum of a thin film.
Fig. 4: Ex situ phase evolution.
Fig. 5: Raman spectra of selected thin films deposited by PLD under optimal conditions using three different approaches.
Fig. 6: Ionic transport properties in thin-film Li–garnet.
Fig. 7: Processing temperature dependence in Li–garnets.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  2. Thompson, T. et al. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett. 2, 462–468 (2017).

    Article  Google Scholar 

  3. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  Google Scholar 

  4. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  Google Scholar 

  5. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  Google Scholar 

  6. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  Google Scholar 

  7. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    Article  Google Scholar 

  8. Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Article  Google Scholar 

  9. Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007).

    Article  Google Scholar 

  10. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    Article  Google Scholar 

  11. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  Google Scholar 

  12. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  Google Scholar 

  13. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  14. Ma, C. et al. Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016).

    Article  Google Scholar 

  15. Awaka, J. et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 40, 60–62 (2011).

    Article  Google Scholar 

  16. Wagner, R. et al. Crystal structure of garnet-related Li-ion conductor Li7–3xGaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chem. Mater. 28, 1861–1871 (2016).

    Article  Google Scholar 

  17. Wagner, R. et al. Fast Li-ion-conducting garnet-related Li7–3xFexLa3Zr2O12 with uncommon I4̅3d structure. Chem. Mater. 28, 5943–5951 (2016).

    Article  Google Scholar 

  18. Bernuy-Lopez, C. et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater. 26, 3610–3617 (2014).

    Article  Google Scholar 

  19. Wolfenstine, J., Ratchford, J., Rangasamy, E., Sakamoto, J. & Allen, J. L. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater. Chem. Phys. 134, 571–575 (2012).

    Article  Google Scholar 

  20. Rettenwander, D. et al. Crystal chemistry of “Li7La3Zr2O12” garnet doped with Al, Ga, and Fe: a short review on local structures as revealed by NMR and Mößbauer spectroscopy studies. Eur. J. Mineral. 28, 619–629 (2016).

    Article  Google Scholar 

  21. Rettenwander, D. et al. Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem. Mater. 28, 2384–2392 (2016).

    Article  Google Scholar 

  22. Howard, M. A. et al. Synthesis, conductivity and structural aspects of Nd3Zr2Li7−3xAlxO12. J. Mater. Chem. A 1, 14013–14022 (2013).

    Article  Google Scholar 

  23. Dumon, A., Huang, M., Shen, Y. & Nan, C.-W. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion. 243, 36–41 (2013).

    Article  Google Scholar 

  24. Zeier, W. G., Zhou, S., Lopez-Bermudez, B., Page, K. & Melot, B. C. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Appl. Mater. Interfaces 6, 10900–10907 (2014).

    Article  Google Scholar 

  25. Li, Y., Han, J.-T., Wang, C.-A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article  Google Scholar 

  26. Rettenwander, D. et al. Synthesis, crystal chemistry, and electrochemical properties of Li7–2xLa3Zr2–xMoxO12 (x = 0.1–0.4): stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+. Inorg. Chem. 54, 10440–10449 (2015).

    Article  Google Scholar 

  27. Allen, J. L., Wolfenstine, J., Rangasamy, E. & Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315–319 (2012).

    Article  Google Scholar 

  28. Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J. Mater. Chem. A 4, 12947–12954 (2016).

    Article  Google Scholar 

  29. Fu, K. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017).

    Article  Google Scholar 

  30. Fu, K. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).

    Article  Google Scholar 

  31. Miara, L. et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Interfaces 8, 26842–26850 (2016).

    Article  Google Scholar 

  32. Hirayama, M., Kim, K., Toujigamori, T., Cho, W. & Kanno, R. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Trans. 40, 2882–2887 (2011).

    Article  Google Scholar 

  33. Lu, Z. G., Cheng, H., Lo, M. F. & Chung, C. Y. Pulsed laser deposition and electrochemical characterization of LiFePO4–Ag composite thin films. Adv. Funct. Mater. 17, 3885–3896 (2007).

    Article  Google Scholar 

  34. Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (LiPON). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    Article  Google Scholar 

  35. Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).

    Article  Google Scholar 

  36. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article  Google Scholar 

  37. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    Article  Google Scholar 

  38. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  Google Scholar 

  39. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Article  Google Scholar 

  40. Patil, A. et al. Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43, 1913–1942 (2008).

    Article  Google Scholar 

  41. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  Google Scholar 

  42. Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015).

    Article  Google Scholar 

  43. Schichtel, P. et al. On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. J. Power Sources 360, 593–604 (2017).

    Article  Google Scholar 

  44. Dai, J., Yang, C., Wang, C., Pastel, G. & Hu, L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, 1802068 (2018).

    Article  Google Scholar 

  45. Rawlence, M. et al. Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7–3xGaxLa3Zr2O12 thin films. ACS Appl. Mater. Interfaces 10, 13720–13728 (2018).

    Article  Google Scholar 

  46. Kalita, D. J., Lee, S. H., Lee, K. S., Ko, D. H. & Yoon, Y. S. Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ion. 229, 14–19 (2012).

    Article  Google Scholar 

  47. Nong, J., Xu, H., Yu, Z., Zhu, G. & Yu, A. Properties and preparation of Li–La–Ti–Zr–O thin film electrolyte. Mater. Lett. 154, 167–169 (2015).

    Article  Google Scholar 

  48. Tan, J. & Tiwari, A. Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett. 1, Q57–Q60 (2012).

    Article  Google Scholar 

  49. Kim, S., Hirayama, M., Taminato, S. & Kanno, R. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans. 42, 13112–13117 (2013).

    Article  Google Scholar 

  50. Garbayo, I. et al. Glass-type polyamorphism in Li–garnet thin film solid state battery conductors. Adv. Energy Mater. 8, 1702265 (2018).

    Article  Google Scholar 

  51. Park, J. S. et al. Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films. Thin Solid Films 576, 55–60 (2015).

    Article  Google Scholar 

  52. Katsui, H. & Goto, T. Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 584, 130–134 (2015).

    Article  Google Scholar 

  53. Tadanaga, K. et al. Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J. Power Sources 273, 844–847 (2015).

    Article  Google Scholar 

  54. Bitzer, M., Van Gestel, T., Uhlenbruck, S. & Buchkremer, H.-P. Sol–gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615, 128–134 (2016).

    Article  Google Scholar 

  55. Chen, R.-J. et al. Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. J. Mater. Chem. A 2, 13277–13282 (2014).

    Article  Google Scholar 

  56. Rawlence, M., Garbayo, I., Buecheler, S. & Rupp, J. L. M. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films. Nanoscale 8, 14746–14753 (2016).

    Article  Google Scholar 

  57. El Shinawi, H. & Janek, J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J. Power Sources 225, 13–19 (2013).

    Article  Google Scholar 

  58. Buschmann, H. et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 13, 19378–19392 (2011).

    Article  Google Scholar 

  59. Rettenwander, D. et al. Site occupation of Ga and Al in stabilized cubic Li7–3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields. Chem. Mater. 27, 3135–3142 (2015).

    Article  Google Scholar 

  60. Rettenwander, D., Geiger, C. A., Tribus, M., Tropper, P. & Amthauer, G. A synthesis and crystal chemical study of the fast ion conductor Li7–3xGaxLa3Zr2O12 with x = 0.08 to 0.84. Inorg. Chem. 53, 6264–6269 (2014).

    Article  Google Scholar 

  61. Rettenwander, D. et al. DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+ xLa3Zr2O12 garnet. Chem. Mater. 26, 2617–2623 (2014).

    Article  Google Scholar 

  62. Wachter-Welzl, A. et al. The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics. Solid State Ion. 319, 203–208 (2018).

    Article  Google Scholar 

  63. Chandrasekhar, H. R., Bhattacharya, G., Migoni, R. & Bilz, H. Infrared and Raman spectra and lattice dynamics of the superionic conductor Li3N. Phys. Rev. B 17, 884–893 (1978).

    Article  Google Scholar 

  64. Tietz, F., Wegener, T., Gerhards, M. T., Giarola, M. & Mariotto, G. Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ion. 230, 77–82 (2013).

    Article  Google Scholar 

  65. Larraz, G., Orera, A. & Sanjuán, M. L. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J. Mater. Chem. A 1, 11419–11428 (2013).

    Article  Google Scholar 

  66. Kong, L. et al. A novel chemical route to prepare La2Zr2O7 pyrochlore. J. Am. Ceram. Soc. 96, 935–941 (2013).

    Article  Google Scholar 

  67. Xie, H., Alonso, J. A., Li, Y., Fernández-Díaz, M. T. & Goodenough, J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23, 3587–3589 (2011).

    Article  Google Scholar 

  68. Cheng, L. et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces 7, 17649–17655 (2015).

    Article  Google Scholar 

  69. Kubicek, M. et al. Oxygen vacancies in fast lithium-ion conducting garnets. Chem. Mater. 29, 7189–7196 (2017).

    Article  Google Scholar 

  70. Van den Broek, J., Afyon, S. & Rupp, J. L. M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater. 6, 1600736 (2016).

    Article  Google Scholar 

  71. Matsuda, Y. et al. Phase formation of a garnet-type lithium-ion conductor Li7−3xAlxLa3Zr2O12. Solid State Ion. 277, 23–29 (2015).

    Article  Google Scholar 

  72. Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).

    Article  Google Scholar 

  73. Zhang, Y. et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ion. 284, 53–60 (2016).

    Article  Google Scholar 

  74. Shin, D. O. et al. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Sci. Rep. 5, 18053 (2015).

    Article  Google Scholar 

  75. Djenadic, R. et al. Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications. Solid State Ion. 263, 49–56 (2014).

    Article  Google Scholar 

  76. Jonson, R. A. & McGinn, P. J. Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions. Solid State Ion. 323, 49–55 (2018).

    Article  Google Scholar 

  77. Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors. J. Power Sources 352, 156–164 (2017).

    Article  Google Scholar 

  78. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Article  Google Scholar 

  79. Ohta, S., Kobayashi, T. & Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X = 0−2). J. Power Sources 196, 3342–3345 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Competence Center Energy and Mobility and Swiss Electrics for funding the project ‘All solid state Li-ion batteries based on new ceramic Li-ion electrolytes’ (proposal 911). J.L.M.R. thanks Lincoln Laboratory project ACC 697 (2018) and the Thomas Lord Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.P., M.S., I.G. and E.S. carried out the experiments. R.P., M.S., I.G., E.S. and J.L.M.R. performed the analysis and discussed the data. R.P. and J.L.M.R. wrote the manuscript with help from all of the co-authors.

Corresponding author

Correspondence to Jennifer L. M. Rupp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes 1 and 2, Supplementary Figs. 1–7, Supplementary discussion, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfenninger, R., Struzik, M., Garbayo, I. et al. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat Energy 4, 475–483 (2019). https://doi.org/10.1038/s41560-019-0384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-019-0384-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing