Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T21:04:22.627Z Has data issue: false hasContentIssue false

Eddy-viscosity-improved resolvent analysis of compressible turbulent boundary layers

Published online by Cambridge University Press:  25 March 2024

Yitong Fan
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
Melissa Kozul
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
Weipeng Li*
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Richard D. Sandberg
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
*
Email address for correspondence: liweipeng@sjtu.edu.cn

Abstract

An improved resolvent analysis is proposed in the regime of compressible turbulent boundary layers. To better model nonlinear processes in the input, the resolvent framework is augmented by adding eddy viscosity. To this end, we propose two eddy-viscosity models: a modified Cess eddy-viscosity model coupling the compressibility transformation and outer-layer correction, and a new eddy-viscosity model based on an empirical relationship and mixing-length theory. Both are incorporated into the resolvent operator to examine the performance of the eddy-viscosity-improved resolvent-based reduced-order modelling. Results of the augmented resolvent analysis are compared qualitatively and quantitatively with the first leading mode of spectral proper orthogonal decomposition, by checking the profiles and cross-spectral densities of velocities, density and temperature in two hypersonic turbulent boundary layers under different wall conditions. Higher accuracy of the turbulence prediction is achieved by adding the proposed eddy-viscosity models, particularly for the energetic cycle in the outer-layer region where strong nonlinear energy transfer exists.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S. 2020 Resolvent modelling of near-wall coherent structures in turbulent channel flow. Intl J. Heat Fluid Flow 85, 108662.CrossRefGoogle Scholar
Amaral, F.R., Cavalieri, A.V.G., Martini, E., Jordan, P. & Towne, A. 2021 Resolvent-based estimation of turbulent channel flow using wall measurements. J. Fluid Mech. 927, A17.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 a Resolvent-based study of compressibility effects on supersonic turbulent boundary layers. J. Fluid Mech. 883, A29.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 b Studying the effect of wall cooling in supersonic boundary layer flow using resolvent analysis. AIAA Scitech 2020 Forum. AIAA.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.CrossRefGoogle Scholar
Cebeci, T. 1971 Calculation of compressible turbulent boundary layers with heat and mass transfer. AIAA J. 9 (6), 10911097.CrossRefGoogle Scholar
Cebeci, T. 2004 4 – general behavior of turbulent boundary layers. In Analysis of Turbulent Flows (ed. T. Cebeci), pp. 81–140. Elsevier.CrossRefGoogle Scholar
Cess, R.D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Tech. Rep. 8-0529-R24. Westinghouse Research.Google Scholar
Chen, X.-L., Cheng, C., Fu, L. & Gan, J.-P. 2023 Linear response analysis of supersonic turbulent channel flows with a large parameter space. J. Fluid Mech. 962, A7.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3), 215234.CrossRefGoogle Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.CrossRefGoogle Scholar
Dawson, S.T.M. & McKeon, B.J. 2019 Studying the effects of compressibility in planar Couette flow using resolvent analysis. AIAA Scitech 2019 Forum. San Diego, California. AIAA.CrossRefGoogle Scholar
Dawson, S.T.M., McKeon, B.J. & Saxton-Fox, T. 2018 Modeling passive scalar dynamics in wall-bounded turbulence using resolvent analysis. In 2018 Fluid Dynamics Conference. Atlanta, Georgia. AIAA.CrossRefGoogle Scholar
van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Escudier, M.P. 1966 The distribution of mixing length in turbulent flows near walls. Tech. Rep. Heat Transfer Section TWF/TN/12. Imperial College London.Google Scholar
Fan, Y.-T. & Li, W.-P. 2023 Spectral analysis of turbulence kinetic and internal energy budgets in hypersonic turbulent boundary layers. Phys. Rev. Fluids 8, 044604.CrossRefGoogle Scholar
Fan, Y.-T., Li, W.-P. & Pirozzoli, S. 2022 Energy exchanges in hypersonic flows. Phys. Rev. Fluids 7, L092601.CrossRefGoogle Scholar
Fan, Y.-T., Li, W.-P. & Sandberg, R.D. 2023 Resolvent-based analysis of hypersonic turbulent boundary layers with/without wall cooling. Phys. Fluids 35 (4), 045118.Google Scholar
Gupta, V., Madhusudanan, A., Wan, M.-P., Illingworth, S.J. & Juniper, M.P. 2021 Linear-model-based estimation in wall turbulence: improved stochastic forcing and eddy viscosity terms. J. Fluid Mech. 925, A18.CrossRefGoogle Scholar
He, W. & Timme, S. 2020 Resolvent analysis of shock buffet on infinite wings. AIAA Paper 2020–2727.CrossRefGoogle Scholar
Holford, J.J., Lee, M. & Hwang, Y. 2023 Optimal white-noise stochastic forcing for linear models of turbulent channel flow. J. Fluid Mech. 961, A32.CrossRefGoogle Scholar
Hou, Y., Somandepalli, V.S.R. & Mungal, M.G. 2006 A technique to determine total shear stress and polymer stress profiles in drag reduced boundary layer flows. Exp. Fluids 40, 589600.CrossRefGoogle Scholar
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jin, B., Illingworth, S.J. & Sandberg, R.D. 2022 Resolvent-based approach for ${H_2}$-optimal estimation and control: an application to the cylinder flow. Theor. Comput. Fluid Dyn. 36, 491515.CrossRefGoogle Scholar
Jin, B., Symon, S. & Illingworth, S.J. 2021 Energy transfer mechanisms and resolvent analysis in the cylinder wake. Phys. Rev. Fluids 6 (2), 024702.CrossRefGoogle Scholar
Jovanović, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input–output viewpoint. Annu. Rev. Fluid Mech. 53 (1), 311345.CrossRefGoogle Scholar
Karban, U., Martini, E., Cavalieri, A.V.G., Lesshafft, L. & Jordan, P. 2022 Self-similar mechanisms in wall turbulence studied using resolvent analysis. J. Fluid Mech. 939, A36.CrossRefGoogle Scholar
Kojima, Y., Yeh, C.-A., Taira, K. & Kameda, M. 2020 Resolvent analysis on the origin of two-dimensional transonic buffet. J. Fluid Mech. 885, R1.CrossRefGoogle Scholar
Lee, M.-K. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4, 063901.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Yaglom & V.I. Tartarsky), pp. 166–177. Nauka.Google Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. AGARD Report No. 709. NASA Jet Propulsion Laboratory.Google Scholar
Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2019 Coherent large-scale structures from the linearized Navier–Stokes equations. J. Fluid Mech. 873, 89109.CrossRefGoogle Scholar
Madhusudanan, A. & McKeon, B.J. 2022 Subsonic and supersonic mechanisms in compressible turbulent boundary layers: a perspective from resolvent analysis. arXiv:2209.14223.Google Scholar
Martini, E., Cavalieri, A.V.G., Jordan, P., Towne, A. & Lesshafft, L. 2020 Resolvent-based optimal estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.CrossRefGoogle Scholar
Martini, E., Jung, J., Cavalieri, A.V.G., Jordan, P. & Towne, A. 2022 Resolvent-based tools for optimal estimation and control via the Wiener–Hopf formalism. J. Fluid Mech. 937, A19.CrossRefGoogle Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Moarref, R., Jovanović, M.R., Tropp, J.A., Sharma, A.S. & McKeon, B.J. 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 a Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 b On effectiveness of a rank-1 model of turbulent channels for representing the velocity spectra. In 43rd Fluid Dynamics Conference. AIAA.CrossRefGoogle Scholar
Morra, P., Nogueira, P.A.S., Cavalieri, A.V.G. & Henningson, D.S. 2021 The colour of forcing statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech. 907, A24.CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Schmidt, O.T., Sipp, D. & Colonius, T. 2021 Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.CrossRefGoogle Scholar
Reynolds, W.C. & Hussain, A.K.M.F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Sharma, A.S. & McKeon, B.J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Symon, S., Illingworth, S.J. & Marusic, I. 2020 Large-scale structures predicted by linear models of wall-bounded turbulence. J. Phys.: Conf. Ser. 1522 (1), 012006.Google Scholar
Symon, S., Illingworth, S.J. & Marusic, I. 2021 Energy transfer in turbulent channel flows and implications for resolvent modelling. J. Fluid Mech. 911, A3.CrossRefGoogle Scholar
Symon, S., Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2023 Use of eddy viscosity in resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8, 064601.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Wu, T. & He, G.-W. 2023 Composition of resolvents enhanced by random sweeping for large-scale structures in turbulent channel flows. J. Fluid Mech. 956, A31.CrossRefGoogle Scholar
Xia, Z.-H., Zhang, P. & Yang, X.I.A. 2021 On skin friction in wall-bounded turbulence. Acta Mechanica Sin. 37 (4), 589598.CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar