Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methotrexate and its mechanisms of action in inflammatory arthritis

Abstract

Despite the introduction of numerous biologic agents for the treatment of rheumatoid arthritis (RA) and other forms of inflammatory arthritis, low-dose methotrexate therapy remains the gold standard in RA therapy. Methotrexate is generally the first-line drug for the treatment of RA, psoriatic arthritis and other forms of inflammatory arthritis, and it enhances the effect of most biologic agents in RA. Understanding the mechanism of action of methotrexate could be instructive in the appropriate use of the drug and in the design of new regimens for the treatment of RA. Although methotrexate is one of the first examples of intelligent drug design, multiple mechanisms potentially contribute to the anti-inflammatory actions of methotrexate, including the inhibition of purine and pyrimidine synthesis, transmethylation reactions, translocation of nuclear factor-κB (NF-κB) to the nucleus, signalling via the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway and nitric oxide production, as well as the promotion of adenosine release and expression of certain long non-coding RNAs.

Key points

  • Methotrexate polyglutamates inhibit aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase (ATIC), leading to intracellular accumulation of AICAR and increased adenosine release; adenosine binds to cell surface receptors and suppresses many inflammatory and immune reactions.

  • Methotrexate inhibits dihydrofolate reductase, preventing the reduction of dihydrobiopterin (BH2) to tetrahydrobiopterin (BH4), leading to nitric oxide synthase uncoupling and increased sensitivity of T cells to apoptosis, thereby diminishing immune responses.

  • Methotrexate inhibits activation of nuclear factor-κB (NF-κB) by increasing both adenosine release and activation of adenosine receptor A2a and by inhibiting the reduction of BH2 to BH4.

  • Methotrexate increases the expression of long intergenic non-coding RNA p21 (lincRNA-p21), which is a multifunction long non-coding RNA that regulates, both directly and indirectly, a variety of critical immune and inflammatory processes.

  • By modulating cell-specific signalling pathways, methotrexate inhibits important pro-inflammatory properties of major cell lineages involved in rheumatoid arthritis pathogenesis, including T cells, macrophages, endothelial cells and fibroblast-like synoviocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structures of folic acid, aminopterin and methotrexate.
Fig. 2: Methotrexate regulates essential biochemical reactions.
Fig. 3: Cell-specific mechanisms of methotrexate in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Weinblatt, M. E. Methotrexate: who would have predicted its importance in rheumatoid arthritis? Arthritis Res. Ther. 20, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singh, J. A. et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 68, 1–25 (2016).

    Article  Google Scholar 

  3. Aaltonen, K. J. et al. Do biologic drugs affect the need for and outcome of joint replacements in patients with rheumatoid arthritis? A register-based study. Semin. Arthritis Rheum. 43, 55–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Asai, S. et al. Effects of concomitant methotrexate on large joint replacement in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors: a multicenter retrospective cohort study in Japan. Arthritis Care Res. 67, 1363–1370 (2015).

    Article  CAS  Google Scholar 

  5. Asai, S. et al. Concomitant methotrexate protects against total knee arthroplasty in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors. J. Rheumatol. 42, 2255–2260 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Herman, R. A., Veng-Pedersen, P., Hoffman, J., Koehnke, R. & Furst, D. E. Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J. Pharm. Sci. 78, 165–171 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Schiff, M. H. & Sadowski, P. Oral to subcutaneous methotrexate dose-conversion strategy in the treatment of rheumatoid arthritis. Rheumatol. Int. 37, 213–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kremer, J. M., Galivan, J., Streckfuss, A. & Kamen, B. Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients. Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum. 29, 832–835 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Chabner, B. A. et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J. Clin. Invest. 76, 907–912 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steffen, J. A. & Stolzmann, W. M. Studies on in vitro lymphocyte proliferation in cultures synchronized by the inhibition of DNA synthesis. I. Variability of S plus G2 periods of first generation cells. Exp. Cell Res. 56, 453–460 (1969).

    Article  CAS  PubMed  Google Scholar 

  11. Morgan, S. L., Baggott, J. E., Lee, J. Y. & Alarcon, G. S. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J. Rheumatol. 25, 441–446 (1998).

    CAS  PubMed  Google Scholar 

  12. Morgan, S. L. et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann. Int. Med. 121, 833–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Morgan, S. L. et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 33, 9–18 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Shiroky, J. B. et al. Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 36, 795–803 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Shea, B. Folic acid or folinic acid for reducing side effects of methotrexate for people with rheumatoid arthritis. J. Evid. Based Med. 6, 202–203 (2013).

    Article  PubMed  Google Scholar 

  16. Joyce, D. A., Will, R. K., Hoffman, D. M., Laing, B. & Blackbourn, S. J. Exacerbation of rheumatoid arthritis in patients treated with methotrexate after administration of folinic acid. Ann. Rheum. Dis. 50, 913–914 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tishler, M., Caspi, D., Fishel, B. & Yaron, M. The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum. 31, 906–908 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Yukioka, K. et al. Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J. Rheumatol. 19, 689–692 (1992).

    CAS  PubMed  Google Scholar 

  19. Nesher, G. & Moore, T. L. The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum. 33, 954–959 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Furumitsu, Y. et al. Levels of urinary polyamines in patients with rheumatoid arthritis. J. Rheumatol. 20, 1661–1665 (1993).

    CAS  PubMed  Google Scholar 

  21. Nesher, G., Osborn, T. G. & Moore, T. L. In vitro effects of methotrexate on polyamine levels in lymphocytes from rheumatoid arthritis patients. Clin. Exp. Rheumatol. 14, 395–399 (1996).

    CAS  PubMed  Google Scholar 

  22. Nesher, G., Moore, T. L. & Dorner, R. W. In vitro effects of methotrexate on peripheral blood monocytes: modulation by folinic acid and S-adenosylmethionine. Ann. Rheum. Dis. 50, 637–641 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan, E. S. & Cronstein, B. N. Methotrexate–how does it really work? Nat. Rev. Rheumatol. 6, 175–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Allegra, C. J., Drake, J. C., Jolivet, J. & Chabner, B. A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc. Natl Acad. Sci. USA 82, 4881–4885 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92, 2675–2682 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cronstein, B. N. & Sitkovsky, M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Montesinos, M. C. et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 43, 656–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Montesinos, M. C. et al. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5’-nucleotidase: findings in a study of ecto-5’-nucleotidase gene-deficient mice. Arthritis Rheum. 56, 1440–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Montesinos, M. C., Desai, A. & Cronstein, B. N. Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res. Ther. 8, R53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montesinos, M. C. et al. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 48, 240–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Riksen, N. P. et al. Methotrexate modulates the kinetics of adenosine in humans in vivo. Ann. Rheum. Dis. 65, 465–470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nesher, G., Mates, M. & Zevin, S. Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum. 48, 571–572 (2003).

    Article  PubMed  Google Scholar 

  33. Benito-Garcia, E. et al. Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J. Rheumatol. 33, 1275–1281 (2006).

    CAS  PubMed  Google Scholar 

  34. Allard, D., Turcotte, M. & Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol. 95, 333–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Peres, R. S. et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 112, 2509–2514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bitoun, S. et al. Methotrexate and BAFF interaction prevents immunization against TNF inhibitors. Ann. Rheum. Dis. 77, 1463–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Chalupsky, K. & Cai, H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 102, 9056–9061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. & Channon, K. M. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling – relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128–28136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sugiyama, T., Levy, B. D. & Michel, T. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells. J. Biol. Chem. 284, 12691–12700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spurlock, C. F. et al. Increased sensitivity to apoptosis induced by methotrexate is mediated by JNK. Arthritis Rheum. 63, 2606–2616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spurlock, C. F., Tossberg, J. T., Fuchs, H. A., Olsen, N. J. & Aune, T. M. Methotrexate increases expression of cell cycle checkpoint genes via JNK activation. Arthritis Rheum. 64, 1780–1789 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Spurlock, C. F. et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology 54, 178–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinblatt, M. E. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans. Am. Clin. Climatol. Assoc. 124, 16–25 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Yang, F., Zhang, H. F., Mei, Y. D. & Wu, M. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol. Cell 53, 88–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spurlock, C. F., Tossberg, J. T., Matlock, B. K., Olsen, N. J. & Aune, T. M. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 66, 2947–2957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malemud, C. J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 10, 117–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gremese, E., Alivernini, S., Tolusso, B., Zeidler, M. P. & Ferraccioli, G. JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy. J. Leukoc. Biol. 106, 1063–1068 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Thomas, S. et al. Methotrexate Is a JAK/STAT pathway inhibitor. PLoS One 10, e0130078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hassanian, S. M., Dinarvand, P. & Rezaie, A. R. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells. J. Cell Physiol. 229, 1292–1300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, J. et al. Adenosine increases LPS-induced nuclear factor kappa B activation in smooth muscle cells via an intracellular mechanism and modulates it via actions on adenosine receptors. Acta Physiol. 210, 590–599 (2014).

    Article  CAS  Google Scholar 

  54. Mediero, A., Perez-Aso, M. & Cronstein, B. N. Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation. Br. J. Pharmacol. 169, 1372–1388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, L. M. et al. Activation of adenosine A2A receptor attenuates inflammatory response in a rat model of small-for-size liver transplantation. Transpl. Proc. 42, 1915–1920 (2010).

    Article  CAS  Google Scholar 

  56. Di Paola, R. et al. Adenosine A2A receptor-selective stimulation reduces signaling pathways involved in the development of intestine ischemia and reperfusion injury. Shock 33, 541–551 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Ramanathan, M., Pinhal-Enfield, G., Hao, I. & Leibovich, S. J. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol. Biol. Cell 18, 14–23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zernecke, A. et al. CD73/ecto-5’-nucleotidase protects against vascular inflammation and neointima formation. Circulation 113, 2120–2127 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sands, W. A., Martin, A. F., Strong, E. W. & Palmer, T. M. Specific inhibition of nuclear factor-κB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol. Pharmacol. 66, 1147–1159 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lukashev, D., Ohta, A., Apasov, S., Chen, J. F. & Sitkovsky, M. Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J. Immunol. 173, 21–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Bshesh, K. et al. The A2A receptor mediates an endogenous regulatory pathway of cytokine expression in THP-1 cells. J. Leukoc. Biol. 72, 1027–1036 (2002).

    CAS  PubMed  Google Scholar 

  62. Plant, D. et al. A genetic marker at the OLIG3/TNFAIP3 locus associates with methotrexate continuation in early inflammatory polyarthritis: results from the Norfolk arthritis register. Pharmacogenomics J. 12, 128–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Municio, C. et al. Methotrexate selectively targets human proinflammatory macrophages through a thymidylate synthase/p53 axis. Ann. Rheum. Dis. 75, 2157–2165 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Municio, C. et al. Methotrexate limits inflammation through an A20-dependent cross-tolerance mechanism. Ann. Rheum. Dis. 77, 752–759 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Spurlock, C. F. III et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology 54, 178–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Cooks, T., Harris, C. C. & Oren, M. Caught in the cross fire: p53 in inflammation. Carcinogenesis 35, 1680–1690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takatori, H., Kawashima, H., Suzuki, K. & Nakajima, H. Role of p53 in systemic autoimmune diseases. Crit. Rev. Immunol. 34, 509–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Rackov, G. et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. J. Clin. Invest. 126, 3089–3103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wu, Z. H., Shi, Y. L., Tibbetts, R. S. & Miyamoto, S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 311, 1141–1146 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, T. et al. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res. Ther. 18, 271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Zheng, S. J., Lamhamedi-Cherradi, S. E., Wang, P., Xu, L. Y. & Chen, Y. H. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54, 1423–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Okuda, Y., Okuda, M. & Bernard, C. C. A. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 135, 29–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Kawashima, H. et al. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J. Immunol. 191, 3614–3623 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Munoz-Fontela, C., Mandinova, A., Aaronson, S. A. & Lee, S. W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat. Rev. Immunol. 16, 741–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Olsen, N. J., Spurlock, C. F. & Aune, T. M. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res. Ther. 16, R17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Merrill, J. T. et al. Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum. 40, 1308–1315 (1997).

    CAS  PubMed  Google Scholar 

  83. Chagoya de Sanchez, V. et al. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat–possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res. 612, 115–121 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Chagoya de Sanchez, V. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? Can. J. Physiol. Pharmacol. 73, 339–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Chagoya de Sanchez, V. et al. Temporal variations of adenosine metabolism in human blood. Chronobiol. Int. 13, 163–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Chan, E. S. et al. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol. 148, 1144–1155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Che, J., Chan, E. S. & Cronstein, B. N. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol. Pharmacol. 72, 1626–1636 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Morgan, S. L., Baggott, J. E., Koopman, W. J., Krumdieck, C. L. & Alarcon, G. S. Folate supplementation and methotrexate. Ann. Rheum. Dis. 52, 315–316 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alarcon, G. S. & Morgan, S. L. Guidelines for folate supplementation in rheumatoid arthritis patients treated with methotrexate: comment on the guidelines for monitoring drug therapy. Arthritis Rheum. 40, 391 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Roszkiewicz, J. & Smolewska, E. In the pursuit of methotrexate treatment response biomarker in Juvenile idiopathic arthritis — are we getting closer to personalised medicine? Curr. Rheumatol. Rep. 19, 19 (2017).

    Article  PubMed  Google Scholar 

  91. Taylor, J. C. et al. Genome-wide association study of response to methotrexate in early rheumatoid arthritis patients. Pharmacogenomics J. 18, 528–538 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Plant, D. et al. Profiling of gene expression biomarkers as a classifier of methotrexate nonresponse in patients with rheumatoid arthritis. Arthritis Rheumatol. 71, 678–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. de Rotte, M. et al. Development and validation of a prognostic multivariable model to predict insufficient clinical response to methotrexate in rheumatoid arthritis. PLoS One 13, e0208534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sergeant, J. C. et al. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res. Ther. 20, 147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Teitsma, X. M. et al. Inadequate response to treat-to-target methotrexate therapy in patients with new-onset rheumatoid arthritis: development and validation of clinical predictors. Ann. Rheum. Dis. 77, 1261–1267 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Szodoray, P. et al. Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun. Rev. 9, 140–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Luban, S. & Li, Z. G. Citrullinated peptide and its relevance to rheumatoid arthritis: an update. Int. J. Rheum. Dis. 13, 284–287 (2010).

    Article  PubMed  Google Scholar 

  98. Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol. 8, 11–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Gubner, R., August, S. & Ginsberg, V. Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am. J. Med. Sci. 221, 176–182 (1951).

    Article  CAS  PubMed  Google Scholar 

  101. Weinblatt, M. E. et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 312, 818–822 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Williams, H. J. et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis: a controlled clinical trial. Arthritis Rheum. 28, 721–730 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. Kremer, J. M. & Lee, J. K. The safety and efficacy of the use of methotrexate in long-term therapy for rheumatoid arthritis. Arthritis Rheum. 29, 822–831 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. US Food and Drug Administration. Drug approval package. accessdata.fda.gov https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204824Orig2s000TOC.cfm (2014).

  105. US Food and Drug Administration. Rasuvo (methotrexate) injection accessdata.fda.gov. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205776Orig1s000TOC.cfm (2015).

Download references

Acknowledgements

The work of T.M.A. was supported by grants from the US National Institutes of Health (R21AR063846, R42AI53948, R01AI044924), the American College of Rheumatology ‘Within Our Reach’ grant programme (ACR124405), the US National Center for Advancing Translation Sciences (UL1TR000445) and the US National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bruce N. Cronstein.

Ethics declarations

Competing interests

B.N.C. declares that he holds equity in Regenosine, a biotech start-up developing therapies for osteoarthritis, and CanFite Biopharma, that he has received grant support from AstraZeneca and Kairos Inc., and that he has a number of patents involving adenosine receptors and hepatic fibrosis, wound healing, bone regeneration and osteoarthritis. T.M.A. declares that he has no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks W. Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Long non-coding RNAs

(lncRNAs). A newly discovered class of RNAs that are defined as RNAs of more than 200 base pairs in length, are transcribed from genes but not translated into proteins due to the presence of multiple translational stop codons and, as RNAs, regulate the expression of target genes and proteins to carry out a vast array of biologic functions.

Warburg effect

A shift from oxidative phosphorylation to glycolysis during cell activation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cronstein, B.N., Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 16, 145–154 (2020). https://doi.org/10.1038/s41584-020-0373-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0373-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing