Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames

Abstract

Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR–Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)–Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2–3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of how gene translation is manipulated by editing upstream open reading frames.
Fig. 2: Overview of manipulation of gene translation by editing uORFs with the CRISPR–Cas9 system.
Fig. 3: Categories of uORFs according to the positions of their start codons and stop codons.
Fig. 4: The anticipated effects of predicted uORFs on pORFs in transient assays.
Fig. 5: Anticipated effects of CRISPR editing on gene translation in uorf mutants.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in the original paper. Other supporting data are available upon reasonable request to the corresponding author.

References

  1. de Montaigu, A. et al. Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proc. Natl Acad. Sci. USA 112, 905–910 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Butaye, K. M. J., Cammue, B. P. A., Delaure, S. L. & De Bolle, M. F. C. Approaches to minimize variation of transgene expression in plants. Mol. Breed. 16, 79–91 (2005).

    Article  Google Scholar 

  3. Hayama, R., Yokoi, S., Tamaki, S., Yano, M. & Shimamoto, K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ito, T. & Meyerowitz, E. M. Overexpression of a gene encoding a cytochrome p450,CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12, 1541–1550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Hellens, R. P., Brown, C. M., Chisnall, M. A. W., Waterhouse, P. M. & Macknight, R. C. The emerging world of small ORFs. Trends Plant Sci. 21, 317–328 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H., Wang, Y. & Lu, J. Function and evolution of upstream ORFs in eukaryotes. Trends Biochem. Sci. 44, 782–794 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Wethmar, K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 5, 765–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. von Arnim, A. G., Jia, Q. & Vaughn, J. N. Regulation of plant translation by upstream open reading frames. Plant Sci. 214, 1–12 (2014).

    Article  CAS  Google Scholar 

  12. Chew, G. L., Pauli, A. & Schier, A. F. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat. Commun. 7, 11663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang, X. H. et al. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34, 875–880 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, G. et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Pawelczak, K. S., Gavande, N. S., VanderVere-Carozza, P. S. & Turchi, J. J. Modulating DNA repair pathways to improve precision genome engineering. ACS Chem. Biol. 13, 389–396 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Osakabe, Y. et al. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat. Protoc. 13, 2844–2863 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    Article  CAS  Google Scholar 

  25. Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidinedeaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    Article  CAS  Google Scholar 

  27. Chen, Y. et al. CRISPR/Cas9-mediated base-editing system efficiently generatesgain-of-function mutations in Arabidopsis. Sci. China Life Sci. 60, 520–523 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Xue, C., Zhang, H., Lin, Q., Fan, R. & Gao, C. Manipulating mRNA splicing by base editing in plants. Sci. China Life Sci. 61, 1293–1300 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tak, Y. E. et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sidorenko, L. V. et al. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing. Nat. Plants 3, 875–884 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, H. D. Regulatory uncertainty over genome editing. Nat. Plants 1, 14011 (2015).

    Article  PubMed  Google Scholar 

  33. Li, Z. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3, 930–936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Pi, L. et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33, 576–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hinnebusch, A. G., Ivanov, I. P. & Sonenberg, N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laing, W. A. et al. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27, 772–786 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merchante, C., Stepanova, A. N. & Alonso, J. M. Translation regulation in plants: an interesting past, an exciting present and a promising future. Plant J. 90, 628–653 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Jorgensen, R. A. & Dorantes-Acosta, A. E. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Front. Plant Sci. 3, 191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yan, L. et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant 8, 1820–1823 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Endo, M. et al. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat. Plants 5, 14–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Shan, Q., Wang, Y., Li, J. & Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Liang, Z. et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413–430 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing, H. L. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14, 327 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Zhai, Z., Jung, H. I. & Vatamaniuk, O. K. Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. J. Vis. Exp. 30, e1149 (2009).

    Google Scholar 

  54. Xu, C. et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47, 784–792 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Nolan, T., Hands, R. E. & Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. Y., Seto, H., Fujioka, S., Yoshida, S. & Chory, J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Espinosa-Ruiz, A., Martínez, C. & Prat, S. Protocol to treat seedlings with brassinazole and measure hypocotyl length in Arabidopsis thaliana. Bio Protoc. 5, e1568 (2015).

    Article  Google Scholar 

  58. Kovács, L. et al. Quantitative determination of ascorbate from the green alga Chlamydomonas reinhardtii by HPLC. Bio Protoc. 6, e2067 (2016).

    Article  Google Scholar 

  59. Lowder, L., Malzahn, A. & Qi, Y. Rapid evolution of manifold CRISPR systems for plant genome editing. Front. Plant Sci. 7, 1683 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Höfgen, R. & Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16, 9877 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Transgenic Science and Technology Program (2018ZX0801002B, 2019ZX08010-001, 2018ZX0800102B and 2019ZX08010-003) and the National Natural Science Foundation of China (31788103 and 31971370).

Author information

Authors and Affiliations

Authors

Contributions

X.S. performed the experiments; Y.W., X.S. and K.C. designed figures; C.G. supervised the project; X.S., H.Z. and C.G. wrote the manuscript.

Corresponding author

Correspondence to Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Jian Lu, Yiping Qi, Changfu Zhu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zhang, H. et al. Nat. Biotechnol. 36, 894–898 (2018): https://doi.org/10.1038/nbt.4202

Li, T. et al. Nat. Biotechnol. 36, 1160–1163 (2018): https://doi.org/10.1038/nbt.4273

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, X., Zhang, H., Wang, Y. et al. Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 15, 338–363 (2020). https://doi.org/10.1038/s41596-019-0238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0238-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research