Molecular Epidemiology of Methicillin-resistant Staphylococcus aureus, Rural Southwestern Alaska

Michael Z. David; Karen M. Rudolph; Thomas W. Hennessy; Susan Boyle-Vavra; Robert S. Daum

Disclosures

Emerging Infectious Diseases. 2008;14(11):1693-1699. 

In This Article

Discussion

CA-MRSA isolates from southwestern rural Alaska differed in important ways from isolates collected in other parts of the United States. These isolates almost universally belonged to CC1, with a minor representation in CC30, CC59, and CC8. Elsewhere in the United States, USA300 (belonging to CC8) has become the most common cause of community-associated SSTIs at medical centers in Atlanta, Baltimore, San Francisco, Houston, Chicago, and Los Angeles[2–4,8,9] and among adults with SSTIs who came to emergency departments in 17 cities.[8] In contrast, ST8 (corresponding to USA300) was an infrequent genotype among MRSA isolates from rural Alaska in 2004–2006 and was absent among isolates from 2 outbreaks in separate villages in 1996 and 2000. Despite these differences in genetic background among the CA-MRSA isolates, nearly all isolates tested were PVL+ and all carried SCCmec IV.

The molecular epidemiology of CA-MRSA infection in Alaska underscores the worldwide geographic diversity of novel CA-MRSA genetic backgrounds identified in the past decade. Isolates containing the PVL genes and either SCCmec IV or SCCmec V that lack resistance to most non–β-lactam antimicrobial drugs have been identified in 6 continents. Examples include ST5 in France and Switzerland; ST80 in Belgium, Croatia, Denmark, England, Finland, Germany, Greece, the Netherlands, Norway, Romania, Scotland, Slovenia, and Sweden; and ST22 in Germany and the Netherlands.[11]

The 3 most common genetic background types in rural Alaska (ST1, ST59, and ST30) have been reported from studies of MRSA in communities elsewhere. ST1, corresponding to pulsed-field gel electrophoresis type USA400, was the strain type responsible for the deaths of 4 children reported in the midwestern United States[20] and the type that predominated in Chicago[10] and other regions in the late 1990s. The prototype strain is MW2, the genome of which has been sequenced.[21] ST1 has become a rare cause of SSTIs in Chicago, Texas, and California, and among SSTI patients at emergency departments in 17 US cities.[8,10]

In Taiwan, ST59 is predominant among strains that are PVL+ and carry SCCmec IV or VT.[18] USA1000, which is also an ST59 strain, circulates among persons with no known exposure to the healthcare system.[22] Some genetic diversity has been noted among ST59 strains as shown by variation in staphylococcal protein A (spa) typing.[11,23–25] ST59 strains were also isolated at a decreasing frequency in 1997–2001 from patients in a California jail,[15] and in Western Europe and Singapore.[11] We found 1 ST59 isolate and 1 single-locus variant of ST59 in the retrospective collection from the 1996 and 2000 outbreaks but found none in the prospective collection.

The evolutionary history of ST30 MRSA strains is complex; the acquisition of the SCCmec element and the PVL genes has likely occurred in this genetic background on several occasions. Phage type 80/81 strains of S. aureus, virulent nosocomial pathogens in the 1950s and 1960s, shared this ST background.[26] By examining the pattern of resistance-gene carriage in various MRSA genetic backgrounds, Diep et al. proposed an evolutionary relationship among ST30 strains, suggesting that an MSSA ST30 strain sequentially added to its genome phage-encoded PVL toxin genes and the SCCmec IV element.[27] However, a strain of ST30 MRSA isolated in 1991 from Wisconsin lacked the PVL genes but carried SCCmec IV,[25] which suggested that the sequence of events hypothesized by Diep et al. does not universally describe the evolution of these strains.[27] Among 5 ST30 MRSA isolates collected in Japan in 1979–1985, 3 were PVL+ and all carried the SCCmec type I element.[28] ST30 isolates reported from various regions commonly carry PVL genes and the SCCmec IV element but can differ in spa type, which suggests a continued and complex evolutionary trajectory for this prevalent sequence type.[8,11,18,24,29–32]

The difference in PVL+, SCCmec IV strain types of MRSA in rural Alaska compared with those in the lower 48 states suggests that Alaska may represent an earlier part of the epidemic curve of CA-MRSA. For example, there was a shift from USA400 to USA300 as the predominant clindamycin-susceptible, PVL+, SCCmec IV-containing MRSA strain in Chicago after 2000.[10] The predominance of ST1 strains in southwestern Alaska may reflect geographic isolation of this region or improved fitness of the strain in the rural Alaskan environment. The clinical spectrum of these community-onset cases is similar to MRSA disease elsewhere with a predominance of SSTIs and few associated instances of bacteremia or other invasive illnesses. This disease spectrum is also similar to that of earlier reports of infections caused by MRSA from this region.[13,14] O'Hara et al., using phylogenetic analyses of the lukSF-PV sequences coding PVL toxin in a sample of international clinical MRSA isolates, recently hypothesized that USA300 emerged after a CC8 MRSA strain acquired the PVL genes from the preexisting, virulent MW2 strain.[33] If this event was the genesis of USA300, this event may have occurred in the lower 48 states, and USA300 had not spread to southwestern Alaska, where USA400 strains still predominated in early 2006.

All MRSA isolates we tested carried SCCmec type IV. So-called healthcare-associated MRSA isolates typically carry SCCmec types II or III, lack PVL genes, tend to be resistant to a greater number of non–β-lactam antimicrobial drugs, and were predominant among strains isolated from cases of hospital infections in the United States before 2000.[5] Such healthcare-associated MRSA isolates were absent from our isolate collections, even from the prospective collection, which was a random sample of MRSA isolates that included inpatients in the region served by the hospital laboratory for 2 years. In contrast, at the University of Chicago in 2004–2005, 8.6% of MRSA isolates from pediatric infections and 51.7% from adult infections carried SCCmec II.[5]

The PVL+, SCCmec IV–bearing strains of MRSA from Alaska that we studied showed a high percentage of clindamycin resistance (57.5%). In contrast, strains of MRSA that cause community-onset skin infections elsewhere in the United States are commonly susceptible to clindamycin,[2–4,8] although exceptions have been documented,[34] most recently in San Francisco among men who have sex with men infected by USA300 strains.[35] Isolates from Alaska also had a relatively low percentage of erythromycin resistance, which reflects the predominance of the ST1 background. Erythromycin-resistant MRSA strains likely have the erm gene, which confers inducible or constitutive resistance to clindamycin, although there are other molecular mechanisms for clindamycin resistance. Surprisingly, among the prospective isolate collection, every isolate resistant to erythromycin was also resistant to clindamycin by single-agent testing, an observation suggesting that the presumably erm-mediated phenotype became constitutive more often. Compared with antimicrobial drug susceptibilities among MRSA identified in Alaska in 2000, clindamycin resistance remained high but decreased slightly from 61% to 57.5%, ciprofloxacin resistance increased from 0% to 7%, and susceptibilities to other antimicrobial drugs remained similar in the prospective collection. In contrast to the situation elsewhere in much of the United States, in southwestern Alaska, clindamycin should be avoided as a first-line agent for treatment of community-onset SSTIs.

Our study was limited because the isolates we examined were from patients in 1 region and the number available in the retrospective collection was not large. The prospective collection was obtained from 1 clinic system and its community hospital, which may not be representative of other regions of Alaska. Furthermore, few clinical data were available regarding patients from whom these isolates were obtained. Our data suggest that further research is needed to clarify the enigma of nearly simultaneous emergence and high prevalence of MRSA strains with PVL toxin genes and SCCmec type IV elements in different predominant genotype backgrounds in different regions of the world.

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.

processing....