Skip to main content
Top
Published in: Cellulose 4/2018

28-02-2018 | Original Paper

PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence

Authors: Tao Huang, Keiichi Kuboyama, Hayaka Fukuzumi, Toshiaki Ougizawa

Published in: Cellulose | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, cellulose nanofibers (CNFs) have been developed as a very popular renewable and biodegradable nanofiller material for polymer nanocomposites. However, achieving good dispersion in a polymer matrix for effective reinforcement is still a challenge because CNFs are hydrophilic, whereas most polymers are hydrophobic. In this study, we report the poly(methyl methacrylate)/2,2,6,6-tetramethylpiperidyl-1-oxyl oxidized CNFs (PMMA/TOCN) nanocomposites, which show good dispersion, improved mechanical properties, excellent transparency, as well as controllable birefringence using a simple surface-modification procedure of TOCN with amine-functionalized poly(ethylene glycol). Studies conducted using transmission electron microscopy and fourier transform infrared spectroscopy showed that TOCNs were homogenously dispersed in the PMMA matrix without aggregation due to the successful surface modification of TOCN. Moreover, the nanocomposites were highly transparent and the transmittance in the visible region was as high as approximately 90%. In addition, we firstly discovered that the birefringence of the nanocomposite could be controlled by the amount of TOCN added, even achieving zero birefringence. More importantly, the tensile strength and Young’s modulus of PMMA were significantly improved with the addition of TOCN. Such well-dispersed TOCN-based nanocomposites with high transparency, controllable birefringence and enhanced mechanical properties exhibit great potential for the applications in the optical devices and in the engineering field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Akkapeddi MK (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 21(4):576–585CrossRef Akkapeddi MK (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 21(4):576–585CrossRef
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef
go back to reference Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10(4):712–716CrossRef Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10(4):712–716CrossRef
go back to reference Carotenuto G, Nicolais L, Kuang X et al (1996) A method for the preparation of PMMA-SiO2 nanocomposites with high homogeneity. Appl Compos Mater 2(6):385–393CrossRef Carotenuto G, Nicolais L, Kuang X et al (1996) A method for the preparation of PMMA-SiO2 nanocomposites with high homogeneity. Appl Compos Mater 2(6):385–393CrossRef
go back to reference Castillo L, López O, López C et al (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95(2):664–674CrossRef Castillo L, López O, López C et al (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95(2):664–674CrossRef
go back to reference Clayton LNM, Sikder AK, Kumar A et al (2005) Transparent poly (methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Func Mater 15(1):101–106CrossRef Clayton LNM, Sikder AK, Kumar A et al (2005) Transparent poly (methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Func Mater 15(1):101–106CrossRef
go back to reference Džunuzović E, Marinović-Cincović M, Vuković J et al (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos 30(6):737–742CrossRef Džunuzović E, Marinović-Cincović M, Vuković J et al (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos 30(6):737–742CrossRef
go back to reference Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1CrossRef Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1CrossRef
go back to reference Frka-Petesic B, Sugiyama J, Kimura S et al (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48(24):8844–8857CrossRef Frka-Petesic B, Sugiyama J, Kimura S et al (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48(24):8844–8857CrossRef
go back to reference Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194CrossRef Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194CrossRef
go back to reference Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14(5):1541–1546CrossRef Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14(5):1541–1546CrossRef
go back to reference Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508CrossRef Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508CrossRef
go back to reference Gao Z, Xie W, Hwu JM et al (2001) The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Calorim 64(2):467–475CrossRef Gao Z, Xie W, Hwu JM et al (2001) The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Calorim 64(2):467–475CrossRef
go back to reference Gonçalves G, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934CrossRef Gonçalves G, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934CrossRef
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef
go back to reference Huang W, Xu G (2010) Characterization of nano-Ag/PVP composites synthesized via ultra-violet irradiation. J Coal Sci Eng (China) 16(2):188–192CrossRef Huang W, Xu G (2010) Characterization of nano-Ag/PVP composites synthesized via ultra-violet irradiation. J Coal Sci Eng (China) 16(2):188–192CrossRef
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef
go back to reference Jia Z, Wang Z, Xu C et al (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400CrossRef Jia Z, Wang Z, Xu C et al (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400CrossRef
go back to reference Khaled SM, Sui R, Charpentier PA et al (2007) Synthesis of TiO2–PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995CrossRef Khaled SM, Sui R, Charpentier PA et al (2007) Synthesis of TiO2–PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995CrossRef
go back to reference Kim S, Wilkie CA (2008) Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol 19(6):496–506CrossRef Kim S, Wilkie CA (2008) Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol 19(6):496–506CrossRef
go back to reference Kim DO, Lee MH, Lee JH et al (2008) Transparent flexible conductor of poly (methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Org Electron 9(1):1–13CrossRef Kim DO, Lee MH, Lee JH et al (2008) Transparent flexible conductor of poly (methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Org Electron 9(1):1–13CrossRef
go back to reference Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos A Appl Sci Manuf 42(11):1856–1861CrossRef Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos A Appl Sci Manuf 42(11):1856–1861CrossRef
go back to reference Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRef Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRef
go back to reference Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297CrossRef Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297CrossRef
go back to reference Ohkita H, Tagaya A, Koike Y (2004a) Preparation of a zero-birefringence polymer doped with a birefringent crystal and analysis of its characteristics. Macromolecules 37(22):8342–8348CrossRef Ohkita H, Tagaya A, Koike Y (2004a) Preparation of a zero-birefringence polymer doped with a birefringent crystal and analysis of its characteristics. Macromolecules 37(22):8342–8348CrossRef
go back to reference Ohkita H, Abe Y, Kojima H et al (2004b) Birefringence reduction method for optical polymers by the orientation-inhibition effect of silica particles. Appl Phys Lett 84(18):3534–3536CrossRef Ohkita H, Abe Y, Kojima H et al (2004b) Birefringence reduction method for optical polymers by the orientation-inhibition effect of silica particles. Appl Phys Lett 84(18):3534–3536CrossRef
go back to reference Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef
go back to reference Palkovits R, Althues H, Rumplecker A et al (2005) Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. Langmuir 21(13):6048–6053CrossRef Palkovits R, Althues H, Rumplecker A et al (2005) Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. Langmuir 21(13):6048–6053CrossRef
go back to reference Patnaik KSKR, Devi KS, Kumar VK (2010) Non-isothermal crystallization kinetics of polypropylene (PP) and polypropylene (PP)/talc nanocomposite. Int J Chem Eng Appl 1(4):346 Patnaik KSKR, Devi KS, Kumar VK (2010) Non-isothermal crystallization kinetics of polypropylene (PP) and polypropylene (PP)/talc nanocomposite. Int J Chem Eng Appl 1(4):346
go back to reference Philip B, Abraham JK, Chandrasekhar A et al (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935CrossRef Philip B, Abraham JK, Chandrasekhar A et al (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935CrossRef
go back to reference Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRef Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRef
go back to reference Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888CrossRef Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888CrossRef
go back to reference Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914CrossRef Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914CrossRef
go back to reference Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Technol 100(24):6496–6504CrossRef Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Technol 100(24):6496–6504CrossRef
go back to reference Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104(2–3):367–372CrossRef Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104(2–3):367–372CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Tagaya A, Koike Y (2012) Compensation and control of the birefringence of polymers for photonics. Polym J 44(4):306–314CrossRef Tagaya A, Koike Y (2012) Compensation and control of the birefringence of polymers for photonics. Polym J 44(4):306–314CrossRef
go back to reference Tagaya A, Ohkita H, Mukoh M et al (2003) Compensation of the birefringence of a polymer by a birefringent crystal. Science 301(5634):812–814CrossRef Tagaya A, Ohkita H, Mukoh M et al (2003) Compensation of the birefringence of a polymer by a birefringent crystal. Science 301(5634):812–814CrossRef
go back to reference Takaichi S, Saito T, Tanaka R et al (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose 21(6):4093–4103CrossRef Takaichi S, Saito T, Tanaka R et al (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose 21(6):4093–4103CrossRef
go back to reference Valandro SR, Lombardo PC, Poli AL et al (2014) Thermal properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites obtained by in situ photopolymerization. Mater Res 17(1):265–270CrossRef Valandro SR, Lombardo PC, Poli AL et al (2014) Thermal properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites obtained by in situ photopolymerization. Mater Res 17(1):265–270CrossRef
go back to reference Yoo Y, Spencer MW, Paul DR (2011) Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer 52(1):180–190CrossRef Yoo Y, Spencer MW, Paul DR (2011) Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer 52(1):180–190CrossRef
go back to reference Zhu J, Start P, Mauritz KA et al (2002) Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77(2):253–258CrossRef Zhu J, Start P, Mauritz KA et al (2002) Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77(2):253–258CrossRef
Metadata
Title
PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence
Authors
Tao Huang
Keiichi Kuboyama
Hayaka Fukuzumi
Toshiaki Ougizawa
Publication date
28-02-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1725-3

Other articles of this Issue 4/2018

Cellulose 4/2018 Go to the issue