New quantum material effectively detects early signs of neurological diseases

NewsGuard 100/100 Score

What if the brain could detect its own disease? Researchers have been trying to create a material that "thinks" like the brain does, which would be more sensitive to early signs of neurological diseases such as Parkinson's.

Thinking is a long way off, but Purdue University and Argonne National Laboratory researchers have engineered a new material that can at least "listen."

The lingua franca is ionic currents, which help the brain perform a particular reaction, needed for something as basic as sending a signal to breathe. Detecting ions means also detecting the concentration of a molecule, which serves as an indicator of the brain's health.

In a study published in Nature Communications, researchers demonstrate the ability of a quantum material to automatically receive hydrogen when placed beneath an animal model's brain slice. Quantum means that the material has electronic properties that both can't be explained by classical physics, and that give it a unique edge over other materials used in electronics, such as silicon.

The edge, in this case, is strong, "correlated" electrons that make the material extra sensitive and extra tunable.

"The goal is to bridge the gap between how electronics think, which is via electrons, and how the brain thinks, which is via ions. This material helped us find a potential bridge," said Hai-Tian Zhang, a Gilbreth postdoctoral fellow in Purdue's College of Engineering and first author on the paper.

In the long run, this material might even bring the ability to "download" your brain, the researchers say.

"Imagine putting an electronic device in the brain, so that when natural brain functions start deteriorating, a person could still retrieve memories from that device," said Shriram Ramanathan, a Purdue professor of materials engineering whose lab specializes in developing brain-inspired technology.

"We can confidently say that this material is a potential pathway to building a computing device that would store and transfer memories," he said.

The researchers tested this material on two molecules: Glucose, a sugar essential for energy production, and dopamine, a chemical messenger that regulates movement, emotional responses and memory.

Because dopamine amounts are typically low in the brain, and even lower for people with Parkinson's disease, detecting this chemical has been notoriously difficult. But detecting dopamine levels early would mean sooner treatment of the disease.

"This quantum material is about nine times more sensitive to dopamine than methods that we use currently in animal models," said Alexander Chubykin, an assistant professor of biological sciences in the Purdue Institute for Integrative Neuroscience, based in Discovery Park.

The quantum material owes its sensitivity to strong interactions between so-called "correlated electrons." The researchers first found that when they placed the material in contact with glucose molecules, the oxides would spontaneously grab hydrogen from the glucose via an enzyme. The same happened with dopamine released from a mouse brain slice.

The strong affinity to hydrogen, as shown when researchers at Argonne National Laboratory created simulations of the experiments, allowed the material to extract atoms on its own - without a power source.

"The fact that we didn't provide power to the material for it to take in hydrogen means that it could bring very low-power electronics with high sensitivity," Ramanathan said. "This could be helpful for probing unexplored environments, as well."

The researchers also say that this material could sense the atoms of a range of molecules, beyond just glucose and dopamine. The next step is creating a way for the material to "talk back" to the brain.

The work was supported by multiple entities, including the Gilbreth Fellowship by the College of Engineering at Purdue University, the National Science Foundation, the Air Force Office for Scientific Research, the National Institute of Mental Health, the Office of Naval Research and the U.S. Department of Energy Office of Science.

This research also aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements made in AI and health as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis