Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion

Abstract

Artificial photosynthesis is a critical challenge in moving towards a sustainable energy future. Photocatalytic generation of hydrogen peroxide from water and dioxygen (H2O + \(\frac{1}{2}\)O2 → H2O2, ΔG° = 117 kJ mol–1) by sunlight is a promising strategy for artificial photosynthesis because H2O2 is a storable and transportable fuel that can be used directly for electricity generation. All previously reported powder photocatalysts, however, have suffered from low efficiency in H2O2 generation. Here we report that resorcinol–formaldehyde resins, widely used inexpensive polymers, act as efficient semiconductor photocatalysts to provide a new basis for H2O2 generation. Simple high-temperature hydrothermal synthesis (~523 K) produces low-bandgap resorcinol–formaldehyde resins comprising π-conjugated and π-stacked benzenoid–quinoid donor–acceptor resorcinol couples. The resins absorb broad-wavelength light up to 700 nm and catalyse water oxidation and O2 reduction by the photogenerated charges. Simulated sunlight irradiation of the resins stably generates H2O2 with more than 0.5% solar-to-chemical conversion efficiency. Therefore, this metal-free system shows significant potential as a new artificial photosynthesis system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of RF resins.
Fig. 2: Structural and electronic properties of RF resins.
Fig. 3: Photocatalytic properties of RF resins.
Fig. 4: Solid-state DD/MAS/13C-NMR charts for the RF523 resins.
Fig. 5: Energy diagrams and interfacial plots.

Similar content being viewed by others

Data availability

All experimental data within the Article and its Supplementary Information are available from the corresponding author upon reasonable request.

References

  1. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  Google Scholar 

  2. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  Google Scholar 

  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  4. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  5. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  6. Kubota, J. & Domen, K. Photocatalytic water splitting using oxynitride and nitride semiconductor powders for production of solar hydrogen. Electrochem. Soc. Interface 22, 57–62 (2013).

    Article  CAS  Google Scholar 

  7. Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009).

    Article  CAS  Google Scholar 

  8. Reijnders, L. & Huijbregts, M. Biofuels for Road Transport: A Seed to Wheel Perspective (Springer, 2009).

  9. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  10. Fukuzumi, S. Production of Lliquid Ssolar Ffuels and Ttheir Uuse in fuel cells. Fuel Cells. Joule 1, 689–738 (2017).

    Article  CAS  Google Scholar 

  11. Fukuzumi, S., Lee, Y. M. & Nam, W. Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. Eur. J. 24, 5016–5031 (2018).

    Article  CAS  Google Scholar 

  12. Teranishi, M., Naya, S. & Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (iv) dioxide photocatalyst. J. Am. Chem. Soc. 132, 7850–7851 (2010).

    Article  CAS  Google Scholar 

  13. Kato, S., Jung, J., Suenobu, T. & Fukuzumi, S. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 6, 3756–3764 (2013).

    Article  CAS  Google Scholar 

  14. Moon, G.-H. et al. Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 7, 4023–4028 (2014).

    Article  CAS  Google Scholar 

  15. Kaynan, N., Berke, B. A., Hazut, O. & Yerushalmi, R. Photocatalytic production of hydrogen peroxide from water and molecular oxygen. J. Mater. Chem. A 2, 13822–13826 (2014).

    Article  CAS  Google Scholar 

  16. Kim, H., Kwon, O. S., Kim, S., Choi, W. & Kim, J.-H. Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ. Sci. 9, 1063–1073 (2016).

    Article  CAS  Google Scholar 

  17. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  Google Scholar 

  18. Shiraishi, Y. et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 53, 13454–13459 (2014).

    Article  CAS  Google Scholar 

  19. Kofuji, Y. et al. Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 6, 7021–7029 (2016).

    Article  CAS  Google Scholar 

  20. Kofuji, Y. et al. Carbon nitride–aromatic diimide–graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 138, 10019–10025 (2016).

    Article  CAS  Google Scholar 

  21. Kofuji, Y. et al. Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production. ACS Sustain. Chem. Eng. 5, 6478–6485 (2017).

    Article  CAS  Google Scholar 

  22. Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T. & Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016).

    Article  CAS  Google Scholar 

  23. Cheng, Y.-J., Yang, S.-H. & Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  Google Scholar 

  24. Marszalek, T., Li, M. & Pisula, W. Design directed self-assembly of donor–acceptor polymers. Chem. Commun. 52, 10938–10947 (2016).

    Article  CAS  Google Scholar 

  25. Fan, X. et al. Construction of graphitic C3N4-based intramolecular donor–acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal. 5, 5008–5015 (2015).

    Article  CAS  Google Scholar 

  26. Li, L., Lo, W., Cai, Z., Zhang, N. & Yu, L. Donor–acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. Macromolecules 49, 6903–6909 (2016).

    Article  CAS  Google Scholar 

  27. Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989).

    Article  CAS  Google Scholar 

  28. ElKhatat, A. M. & Al-Muhtaseb, S. A. Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 23, 2887–2903 (2011).

    Article  CAS  Google Scholar 

  29. Liu, L. et al. Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).

    Article  CAS  Google Scholar 

  30. Wagner, W. & Pruss, A. International equations for the saturation properties of ordinary water substance. revised according to the international temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987). J. Phys. Chem. Ref. Data 22, 783–804 (1993).

    Article  CAS  Google Scholar 

  31. Zhao, J. et al. A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres. Macromolecules 46, 140–145 (2013).

    Article  CAS  Google Scholar 

  32. Durairaj, R. B. Resorcinol, Chemistry, Technology and Applications (Springer, 2005).

  33. Fries, K. & Brandes, E. Zur Kenntnis der Chinonmethide. Liebigs Ann. Chem. 542, 48–77 (1939).

    Article  CAS  Google Scholar 

  34. Hultzsch, K. Studien auf dem Gebiet der Phenol‐Formaldehyd‐Harze, II: Chinonmethide als Zwischenprodukte bei der Phenolharz‐Härtung. Ber. Dtsch Chem. Ges. 74, 898–904 (1941).

    Article  Google Scholar 

  35. Li, T., Cao, M., Liang, J., Xie, X. & Du, G. Mechanism of base-catalyzed resorcinol–formaldehyde and phenol–resorcinol–formaldehyde condensation reactions: a theoretical study. Polymers 9, 426 (2017).

    Article  Google Scholar 

  36. Mulik, S., Sotiriou-Leventis, C. & Leventis, N. Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19, 6138–6144 (2007).

    Article  CAS  Google Scholar 

  37. Kim, M. G., Amos, L. W. & Barnes, E. E. Investigation of a resorcinol–formaldehyde resin by C-NMR spectroscopy and intrinsic viscosity measurement. J. Polym. Sci. A 31, 1871–1877 (1993).

    Article  CAS  Google Scholar 

  38. Šebenik, A., Osredkar, U. & Vizovišek, I. Study of the reaction between resorcinol and formaldehyde. Polymer 22, 804–806 (1981).

    Article  Google Scholar 

  39. Egorin, A. M. et al. Effect of parameters of thermal treatment of resorcinol–formaldehyde resins on their chemical stability and 137Cs uptake efficiency. J. Radioanal. Nucl. Chem. 304, 281–286 (2015).

    Article  CAS  Google Scholar 

  40. Liebscher, J. et al. Structure of polydopamine: a never-ending story? Langmuir 29, 10539–10548 (2013).

    Article  CAS  Google Scholar 

  41. Valle, M. A. et al. Electropolymerization of N-vinylcarbazole in the presence of galvinoxyl. Polym. Bull. 57, 321–328 (2006).

    Article  Google Scholar 

  42. Kuroda, S., Noguchi, T. & Ohnishi, T. Electron nuclear double resonance observation of π-electron defect states in undoped poly(paraphenylene vinylene). Phys. Rev. Lett. 72, 286–289 (1994).

    Article  CAS  Google Scholar 

  43. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  44. Janiak, C. A critical account on ππ stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 21, 3885–3896 (2000).

    Article  Google Scholar 

  45. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, 1997).

  46. Hill, R. M. Hopping conduction in amorphous solids. Philos. Mag. 24, 1307–1325 (1971).

    Article  CAS  Google Scholar 

  47. Gordon, I. et al. Editorial. Sol. Energy Mater. Sol. Cells 133, A1–A6 (2015).

    Article  CAS  Google Scholar 

  48. Shiraishi, Y. & Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C 9, 157–170 (2008).

    Article  CAS  Google Scholar 

  49. Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Efficient photocatalytic production of hydrogen peroxide from water and dioxygen with bismuth vanadate and a cobalt(ii) chlorin complex. ACS Energy Lett. 1, 913–919 (2016).

    Article  CAS  Google Scholar 

  50. Slattery, R. A. & Ort, D. R. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiol. 168, 383–392 (2015).

    Article  CAS  Google Scholar 

  51. Sugano, Y. et al. Supported Au–Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew. Chem. Int. Ed. 52, 5295–5299 (2013).

    Article  CAS  Google Scholar 

  52. Liu, Y., Quan, X., Fan, X., Wang, H. & Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015).

    Article  CAS  Google Scholar 

  53. Toma, F. M. et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat. Chem. 2, 826–831 (2010).

    Article  CAS  Google Scholar 

  54. Hirakawa, H., Hashimoto, M., Shiraishi, Y. & Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 39, 10929–10936 (2017).

    Article  Google Scholar 

  55. Sakamoto, H. et al. Hot-electron-induced highly efficient O2 activation by Pt nanoparticles supported on Ta2O5 driven by visible light. J. Am. Chem. Soc. 137, 9324–9332 (2015).

    Article  CAS  Google Scholar 

  56. Shiraishi, Y. et al. Light-triggered self-assembly of gold nanoparticles based on photoisomerization of spirothiopyran. Angew. Chem. Int. Ed. 52, 8304–8308 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Precursory Research for Embryonic Science and Technology (PRESTO) programme (JPMJPR1442) under the supervision of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. directed this project. T.T., T.Ha., S.M., Y.Ko. and T.Hi. conducted the experimental work and analysed the data. Y.Ki. performed computational calculations. S.T. performed XPS measurements. S.I. performed TEM observations. The manuscript was written by Y.S. with contributions from the other coauthors.

Corresponding author

Correspondence to Yasuhiro Shiraishi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figs. 1–22, Supplementary references 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraishi, Y., Takii, T., Hagi, T. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0398-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing