Postoperative Delirium in Critically Ill Surgical Patients

Incidence, Risk Factors, and Predictive Scores

Onuma Chaiwat; Mellada Chanidnuan; Worapat Pancharoen; Kittiya Vijitmala; Praniti Danpornprasert; Puriwat Toadithep; Chayanan Thanakiattiwibun

Disclosures

BMC Anesthesiol. 2019;19(39) 

In This Article

Discussion

The cohort of critically ill surgical patients in this study displayed an incidence of POD of 24.4%. The independent risk factors associated with POD were a higher age, dementia, underlying DM, higher severity scores at time of the SICU admission, the use of benzodiazepine medication during the perioperative period, and the use of mechanical ventilation during the ICU stay. A predictive score to identify patients who had a high potential to develop delirium was created. An internal validation which was then performed in the same population demonstrated high accuracy. The cut-off point of 125 showed high sensitivity and specificity. In addition, the delirious patients demonstrated worse clinical outcomes than the non-delirious patients.

The reported incidences of POD among surgical patients range from very low to high percentage.[25] The variations in those rates have been related to the studied population, the surgical procedures, and the delirium assessment tools employed.[26,27] Although POD is common in older surgical patients, it can occur among patients of all ages if the recognized precipitating risk factors are present, for example, major[28] or emergency surgery.[11,29] In the present study, delirium occurred in a quarter of the study population; however, 90% of the POD cases were found among those patients aged over 60. In addition, those patients who required emergency or major surgery (including vascular and orthopedic surgery) had a higher incidence of POD than patients undergoing elective or other types of surgery.

Delirium can present as hyperactive, hypoactive, or as mixed forms, and RASS is used to categorize the subtype of delirium, as previously mentioned.[30] The majority of delirious patients (72%) in this cohort were hypoactive. Previous studies[30,31] have demonstrated that increased age is associated with hypoactive delirium; the prognosis seems to be worse with this type because of an under- recognition by healthcare personnel, resulting in delayed treatment. In addition, differentiating delirium from dementia or depression can be confusing; as well, a patient might even have all of these psychiatric syndromes at the same time.[32] Given a lack of information regarding the history of a patients' baseline mental status both in medical records and from family members, it is safest to assume delirium.[33] A combination of non-pharmacological and pharmacological interventions to manage and prevent further complications should be implemented. This includes behavioral and non-pharmacological strategies such as: making sure the patient has the required sensory enhancement devices (hearing aids, ensuring glasses), early mobilization, cognitive orientation, pain control, sleep enhancement and regular medication review.[5] When it comes to a pharmacologic approach for delirium prevention, the benefits of approach remain unclear and show no significant effect on length of hospital stay or mortality.[34]

The POD risk factors for surgical patients who are critically ill have been addressed by several studies.[35,36] The factors can be differentiated into 2 broad types: those linked to the patients (the predisposing factors), and those that induce the occurrence of delirium (the precipitating factors). Consequently, the overall risk for delirium results from a combination of the predisposing and precipitating factors. Older age, dementia, depression, multiple or specific comorbidities, and alcohol abuse have been demonstrated to be common predisposing risk factors.[37] Among the chronic diseases, cardiovascular[38,39] and metabolic diseases, such as DM,[40,41] have been reported as being associated with POD the most often. In the current study, older age, dementia (assessed by the modified IQ code), and DM were the predisposing factors that were found to be independently associated with the development of delirium. Dementia was assessed both by the patient's history and the assessment tool. The prevalence of dementia among the elderly delirious patients was 5 times higher when evaluated by the tool than when using information obtained from history taking. As dementia is an important risk factor, it is far more preferable to evaluate this condition using a validated and reliable tool rather than gathering data only via history taking. Among the precipitating factors, drugs (including psychoactive agents and sedative hypnotics), surgery, anesthesia, the severity of illness, infections, and the use of a mechanical ventilator were the most common.[10] In contrast to a previous report,[42] the intraoperative risk factors (site of surgery, duration of surgery, bleeding, and hypoxia and hypotension during anesthesia) were not linked to POD development in the present study's cohort. Differences in the types of the populations and the surgery types might be the reasons. All patients in the current study were admitted to a SICU post-operatively and nearly the majority had undergone intra-abdominal surgery, with an average duration of surgery of less than 4 h and minimal blood loss (< 500 ml). Not surprisingly, mechanical ventilation, perioperative benzodiazepine use, and illness severity were precipitating factors of delirium found among patients in the current study. A direct causal link between these factors and the occurrence of POD can, however, not be proven by this study.

As previously mentioned, both POD and delirium in general contributes to unfavorable clinical and functional outcomes. Strong evidence has indicated that POD is connected with higher mortality in both the short and long terms. POD's impact on mortality does not depend on surgical type for either elective or emergency surgery. In the hospital, delirium increases the risks of adverse events and results in longer lengths of stay.[37] The current study reported an increased incidence of death, a prolonged length of stay, and a higher rate of adverse events among the delirious patients. ICU adverse events, including self extubation and the self-removal of catheters, can result in high morbidity, such as aspiration, infection and bleeding. The use of physical restraints and sleep deprivation can be either precipitating factors or the consequences of delirium. Nevertheless, in the present study, those two conditions were categorized as adverse outcomes of delirium (i.e., were considered as consequences) because the majority of the cohort experienced delirium very early (day 1 after their SICU admission). Delirium is also related to poor long-term outcomes; a meta-analysis[2] of 3000 patients who were followed for almost 2 years demonstrated that delirium that occurred in hospital was connected with an incident of dementia, a higher risk of death, and long term cognitive dysfunction even among patients who were aged under 50.[43]

Delirium can contribute to higher morbidity and mortality and a number of risk factors have been recognized in different populations. It would be much better if a simple and accurate delirium prediction score could be developed that can identify those critically ill surgical patients who have a high likelihood of developing POD, drawing on the known predisposing and the immediate precipitating factors. Although several scoring systems for predicting POD have been developed and used, some limitations exist in terms of their general application to critically ill surgical patients. For example, some of the prediction scores were developed for medical patients[44] or only for general surgical patients,[45] and their prediction scores were too complicated.[46] As consequence, the prediction score for the critically ill, general surgical patients was developed using the information provided by the present study. Separating the delirious patients with an ROC curve showed an AUC of 0.84 and an estimated shrinkage factor of 0.92. Both values were classified as good.[47,48] Therefore, the equation was suitable for discriminating between delirious and non-delirious patients. The ROC curve demonstrated an optimal cut-off point of 125, the point with the highest Youden's index, with a sensitivity of 72.13% and a specificity of 80.95%.[23] Given that, we can demonstrate a simple predictive score with a high accuracy and reliability.

This study has several limitations. Firstly, the studied population included only surgical patients who had undergone general surgery and had been admitted to a SICU; the results therefore cannot be generalized to all critically ill surgical patients, for example, critically ill cardiac and neuro-surgical patients. In addition, some relevant information during the preoperative and intraoperative periods was not obtained, such as any history of previous incidents of delirium, intraoperative medication usage, the use of antipsychotic medications, and the degree of postoperative pain. Moreover, due to resource limitations, the frequency of delirium assessment could only be regularly performed twice a day. This might result in an underestimation of the incidence of delirium. Lastly, the management of delirium was not protocolized; the resulting variety in management might affect the outcomes. To illustrate, a consistent administration of some medications (such as dexmedetomidine) or of non-pharmacological interventions for some patients might have improved the outcomes. However, the management of hyperactive delirium by the SICU staff did not appear to differ much in practice, and most hyperactive delirious patients in the SICU were consulted by a geriatrician or psychiatrist.

processing....