Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spleen necrosis virus-derived C-type retroviral vectors for gene transfer to quiescent cells

Abstract

Gene therapy applications of retroviral vectors derived from C-type retroviruses have been limited to introducing genes into dividing target cells. Here, we report genetically engineered C-type retroviral vectors derived from spleen necrosis virus (SNV), which are capable of infecting nondividing cells. This has been achieved by introducing a nuclear localization signal (NLS) sequence into the matrix protein (MA) of SNV by site-directed mutagenesis. This increased the efficiency of infecting nondividing cells and was sufficient to endow the virus with the capability to efficiently infect growth-arrested human T lymphocytes and quiescent primary monocyte-derived macrophages. We demonstrate that this vector actively penetrates the nucleus of a target cell, and has potential use as a gene therapy vector to transfer genes into nondividing cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmid constructs.
Figure 2: Nuclear localization sequence and SNV MA mutants.
Figure 3: Experimental system.
Figure 4: FACS analysis of the DNA content of D17, C8166, or H9 cells.
Figure 5: Experiments to test for the presence of viral DNA in the nuclei of infected quiescent cells.
Figure 6: Infection of human blood monocyte-derived macrophages.

Similar content being viewed by others

References

  1. Miller, A.D. Retrovirus packaging cells. Hum. Gene. Ther. 1, 5–14 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Dornburg, R. Reticuloendotheliosis viruses and derived vectors. Gene Ther. 2, 301–310 (1995).

    CAS  PubMed  Google Scholar 

  3. Robbins, P.D., Tahara, H. & Ghivizzani, S.C. Viral vectors for gene therapy. Trends Biotechnol 16, 35–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, A.D. Retroviral vectors. Curr. To.p Microbiol. Immunol. 158, 1–24 (1992).

    CAS  Google Scholar 

  5. Gilboa, E. & Smith, C. Gene therapy for infectious diseases: the AIDS model. Trends Genet. 10, 139–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, W.F. Human gene therapy. Nature 392, 25–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Pomerantz, R.J. & Trono, D. Genetic therapies for HIV infections: promise for the future. AIDS 9, 985–993 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Vile, R.G., Tuszynski, A. & Castleden, S. Retroviral vectors. from laboratory tools to molecular medicine. Mol.Biotechnol., 139–158 (1996).

  9. Weichselbaum, R.R. & Kufe, D. Gene therapy of cancer. Lancet 349 (Suppl. 2), SII10–SII12 (1997).

    Article  PubMed  Google Scholar 

  10. Blaese, M. et al. Vectors in cancer therapy: how will they deliver?. Cancer Gene Ther. 2, 291–297 (1995).

    CAS  PubMed  Google Scholar 

  11. Vile, R. & Russell, S.J. Gene transfer technologies for the gene therapy of cancer. Gene Ther. 1, 88–98 (1994).

    CAS  PubMed  Google Scholar 

  12. Varmus, H.E. & Brown, P. In Mobile DNA (eds Berg, D.E. & Howe, M.M.) 53–108 (American Society for Microbiology, Washington, D.C.; 1988).

    Google Scholar 

  13. Temin, H.M. In Gene transfer (ed. Kucherlapati, R.) 144–187 (Plenum Press, New York; 1986).

    Google Scholar 

  14. Bukrinsky, M.I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–670 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, P. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwedler, U., Kornbluth, R.S. & Trono, D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA 91, 6992–6996 (1999).

    Article  Google Scholar 

  17. Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T. & Shimada, T. Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of non-dividing cells. Hum. Gene Ther. 9, 467–475 (1999).

    Article  Google Scholar 

  18. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T. & Shimada, T. Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of nondividing cells. Hum. Gene Ther. 9, 467–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Poeschla, E., Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy. Proc. Natl. Acad. Sci. USA 93, 11395–11399 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, W.-S. & Temin, H.M. Retroviral recombination and reverse transcription. Science 250, 1227–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Temin, H.M. Sex and recombination in retroviruses. Trends Genet. 7, 71–74 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Dornburg, R. From the natural evolution to the genetic manipulation of the host range of retroviruses. Biol. Chem. 378, 457–468 (1997).

    CAS  PubMed  Google Scholar 

  26. Kewalramani, V.N., Panganiban, A.T. & Emerman, M. Spleen necrosis virus, an avian immunosuppressive retrovirus, shares a receptor with the type D simian retroviruses. J. Virol. 66, 3026–3031 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez, I. & Dornburg, R. Mapping of receptor binding domains in the envelope protein of spleen necrosis virus. J. Virol. 69, 4339–4346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez, I. & Dornburg, R. Mutational analysis of the envelope protein of spleen necrosis virus. J. Virol. 70, 6036–6043 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gautier, R., Jiang, A., Rousseau, V., Dornburg, R. & Jaffredo, T. The reticuloendotheliosis viruses strain A, REV-A or spleen necrosis virus, SNV, are non-infectious in human cells. J. Virol. 74, 518–522 in press (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu, T.-H. & Dornburg, R. Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. J. Virol. 69, 2659–2663 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chu, T.-H., Martinez, I., Sheay, W.C. & Dornburg, R. Cell targeting with retroviral vector particles containing antibody–envelope fusion proteins. Gene. Ther. 1, 292–299 (1994).

    CAS  PubMed  Google Scholar 

  32. Chu, T.-H. & Dornburg, R. Towards highly-efficient cell-type-specific gene transfer with retroviral vectors that display a single chain antibody. J. Virol 71, 720–725 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang, A., Chu, T.-H.T., Nocken, F., Cichutek, K. & Dornburg, R. Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J. Virol. 72, 10148–10156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Engelstädter, M. et al. Targeting human T-cells by retroviral vectors displaying antibody domains selected from a phage display library. Hum. Gene Ther. 11, 293–303 (2000).

    Article  PubMed  Google Scholar 

  35. Jiang, A. & Dornburg, R. In vivo cell-type-specific gene delivery with retroviral vectors that display single chain antibodies. Gene Ther. 6, 1982–1987 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kootstra, N.A. & Schuitemaker, H. Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and vpr is comparable to wild-type HIV-1 in primary macrophages. Virology 253, 170–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Fouchier, R.A., Meyer, B.E., Simon, J.H., Fischer, U. & Malim, M.H. HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for gag processing but not for post-entry nuclear import. EMBO J. 16, 4531–4539 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoneda, Y. How proteins are transported from cytoplasm to the nucleus. J Biochem. (Tokyo) 121, 811–817 (1997).

    Article  CAS  Google Scholar 

  39. Gorlich, D. Nuclear protein import. Curr. Opin. Cell Biol. 9, 412–419 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Moroianu, J. Molecular mechanisms of nuclear protein transport. Crit. Rev. Eukaryot. Gene Expr. 7, 61–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Boulikas, T. Nuclear import of protein kinases and cyclins. J. Cell Biochem. 60, 61–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez, I. & Dornburg, R. Partial reconstitution of a replication-competent retrovirus in helper cells with partial overlaps between vector and helper cell genomes. Hum. Gene Ther. 7, 705–712 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Stevenson, M. & Gendelman, H.E. Cellular and viral determinants that regulate HIV-1 infection in macrophages. J. Leuk. Biol. 56, 278–288 (1994).

    Article  CAS  Google Scholar 

  44. Huang, Z.B. et al. Infection of macrophages with lymphotropic human immunodeficiency virus type 1 can be arrested after viral DNA synthesis. J. Virol. 67, 6893–6896 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blaese, R.M. et al. T lymphocyte-directed gene therapy for ADA–SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. von Schwedler, U., Kornbluth, R.S. & Trono, D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA. 91, 6992–6996 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Collman, R. et al. Infection of monocyte-derived macrophages with human immunodeficiency virus type 1 (HIV-1). monocyte-tropic and lymphocyte-tropic strains of HIV-1 show distinctive patterns of replication in a panel of cell types. J. Exp. Med. 170, 1149–1163 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Temin, H.M. The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J. Natl. Cancer Inst. 46, 3–7 (1971).

    CAS  PubMed  Google Scholar 

  49. Coffin, J.M. Genetic diversity and evolution of retroviruses. Curr. Top. Microbiol. Immunol. 176, 143–164 (1992).

    CAS  PubMed  Google Scholar 

  50. Deminie, C.A. & Emerman, M. Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J. Virol. 68, 4442–4449 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Deminie, C.A. & Emerman, M. Incorporation of human immunodeficiency virus type 1 gag proteins into murine leukemia virus virions. J. Virol. 67, 6499–6506 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mikawa, T., Fischman, D.A., Dougherty, J.P. & Brown, A.M.C. In vivo analysis of a new lacZ retrovirus vector suitable for lineage marking in avian and other species. Exp. Cell Res. 195, 516–523 (1992).

    Article  Google Scholar 

  53. Martinez, I. & Dornburg, R. Improved retroviral packaging lines derived from spleen necrosis virus. Virology 208, 234–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Urban, A., Neukirchen, S. & Jaeger, K.E. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension pcr. Nucleic Acids Res. 25, 2227–2228 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Picard, V., Ersdal-Badju, E., Lu, A. & Bock, S.C. A rapid and efficient one-tube PCR-based mutagenesis technique using pfu DNA polymerase. Nucleic Acids Res. 22, 2587–2591 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Press,Cold Spring Harbor, NY: 1995).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. M. Schnell at Thomas Jefferson University for helpful comments on this manuscript. This research was supported by funds obtained from the National Institutes of Health (grant number 1RO1 AI 41899–01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Dornburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parveen, Z., Krupetsky, A., Engelstädter, M. et al. Spleen necrosis virus-derived C-type retroviral vectors for gene transfer to quiescent cells. Nat Biotechnol 18, 623–629 (2000). https://doi.org/10.1038/76458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing