Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Placental transfusion: may the “force” be with the baby

Abstract

Placental transfusion results in a significant decrease in the risk of death for extremely preterm infants. With immediate cord clamping (ICC), these infants can leave up to one-half of their normal circulating in utero blood volume in the placenta. Extremely preterm infants are at highest risk of harm from ICC yet are currently the most likely to receive ICC. Receiving a placenta transfusion provides infants with life-saving components and enhanced perfusion. We present some lesser-known but important effects of placental transfusion. New research reveals that enhanced vascular perfusion causes an organ’s endothelial cells to release angiocrine responses to guide essential functions. High progesterone levels and pulmonary artery pressure in the first few hours of life assist with neonatal adaptation. We propose that lack of essential blood volume may be a major factor contributing to inflammation, morbidities, and mortality that preterm infants frequently encounter.

Key points

  • Placental transfusion provides enhanced vascular perfusion and reduces the risk of death for preterm infants

  • Enhanced vascular perfusion stimulates endothelial cells to release vital angiocrine messengers to guide normal function and development of neonatal organs

  • High progesterone levels and pulmonary artery pressure in the first 12 h may assist the newborn to adapt to the placental transfusion throughout the body

  • Blood volume conservation is important at birth and during the NICU stay for preterm infants

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of mechanotransduced angiocrine signals in the liver.
Fig. 2: Electron microscopy photographs of capillaries from heel biopsies of infants with immediate cord clamping (ICC) or cord clamping when pulsations stopped (±5 min, DCC).
Fig. 3: Electron micrographs of transverse sections through small muscular lung arterioles in naturally born piglets.
Fig. 4: Diagram illustrating en face shape changes in the endothelial cells of intra-acinar arteries during the first 3 weeks of life (porcine).

Similar content being viewed by others

References

  1. Augustin HG, Koh GY. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science. 2017;357:6353.

    Article  Google Scholar 

  2. Committee on Obstetric Practice. Committee Opinion No. 684. Delayed umbilical cord clamping after birth. Obstet Gynecol. 2017;129:e5–10.

    Article  Google Scholar 

  3. Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218:1–18.

    Article  PubMed  Google Scholar 

  4. Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJR, et al. Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. Obstet Gynecol. 2014;124:47–56.

    Article  PubMed  Google Scholar 

  5. Rabe H, Gyte GM, Díaz-Rossello JL, Duley L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Pregnancy and Childbirth Group, editor. Cochrane Database Syst Rev. 17 Sep 2019. http://doi.wiley.com/10.1002/14651858.CD003248.pub4. Accessed 10 Nov 2019.

  6. Lodha A, Shah PS, Soraisham AS, Rabi Y, Abou Mehrem A, Singhal N, et al. Association of deferred vs immediate cord clamping with severe neurological injury and survival in extremely low-gestational-age neonates. JAMA Netw Open. 2019;2:e191286.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Katheria A, Garey D, Truong G, Akshoomoff N, Steen J, Maldonado M, et al. A randomized clinical trial of umbilical cord milking vs delayed cord clamping in preterm infants: neurodevelopmental outcomes at 22–26 months of corrected age. J Pediatr. 2018;194:76–80.

    Article  PubMed  Google Scholar 

  8. Mercer JS, Erickson-Owens DA, Vohr BR, Tucker RJ, Parker AB, Oh W, et al. Effects of placental transfusion on neonatal and 18 month outcomes in preterm infants: a randomized controlled trial. J Pediatr. 2016;168:50–55. e1.

    Article  PubMed  Google Scholar 

  9. Rabe H, Sawyer A, Amess P, Ayers S. Brighton Perinatal Study Group Neurodevelopmental outcomes at 2 and 3.5 years for very preterm babies enrolled in a randomized trial of milking the umbilical cord versus delayed cord clamping. Neonatology. 2016;109:113–9.

    Article  PubMed  Google Scholar 

  10. Bhatt S, Polglase GR, Wallace EM, te Pas AB, Hooper SB. Ventilation before umbilical cord clamping improves the physiological transition at birth. Front Pediatr. 20 Oct 2014. http://journal.frontiersin.org/article/10.3389/fped.2014.00113/abstract. Accessed 4 Oct 2019.

  11. Cashore W. Hypovolemia resulting from a tight nuchal cord at birth. Pediatr Res. 1973;7:399.

    Google Scholar 

  12. Chaudhury S, Saqibuddin J, Birkett R, Falcon-Girard K, Kraus M, Ernst LM, et al. Variations in umbilical cord hematopoietic and mesenchymal stem cells with bronchopulmonary dysplasia. Front Pediatr. 2019;7:475.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973. e1.

    Article  PubMed  Google Scholar 

  14. Liao Y, Cotten M, Tan S, Kurtzberg J, Cairo MS. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transpl. 2013;48:890–900.

    Article  CAS  Google Scholar 

  15. Yao AC, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet Lond Engl. 1969;2:871–3.

    Article  CAS  Google Scholar 

  16. Sippell WG, Becker H, Versmold HT, Bidlingmaier F, Knorr D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. J Clin Endocrinol Metab. 1978;46:971–85.

    Article  CAS  PubMed  Google Scholar 

  17. Trotter A, Maier L, Kron M, Pohlandt F. Effect of oestradiol and progesterone replacement on bronchopulmonary dysplasia in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92:F94–98.

    Article  CAS  PubMed  Google Scholar 

  18. González-Orozco JC, Camacho-Arroyo I. Progesterone actions during central nervous system development. Front Neurosci. 2019;13:503.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berger R, Söder S. Neuroprotection in preterm infants. BioMed Res Int. 2015;2015:1–14.

    CAS  Google Scholar 

  20. Katheria AC, Lakshminrusimha S, Rabe H, McAdams R, Mercer JS. Placental transfusion: a review. J Perinatol. 2017;37:105–11.

    Article  CAS  PubMed  Google Scholar 

  21. Kresch M. Management of the third stage of labor: how delayed umbilical cord clamping can affect neonatal outcome. Am J Perinatol. 2017;34:1375–81.

    Article  PubMed  Google Scholar 

  22. Mercer JS, Erickson-Owens DA. Rethinking placental transfusion and cord clamping issues. J Perinat Neonatal Nurs. 2012;26:202–17. quiz 218–9.

    Article  PubMed  Google Scholar 

  23. Tolosa JN, Park D-H, Eve DJ, Klasko SK, Borlongan CV, Sanberg PR. Mankind’s first natural stem cell transplant. J Cell Mol Med. 2010;14:488–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell. 2018;44:297–312. e5.

    Article  CAS  PubMed  Google Scholar 

  25. Peng T, Morrisey EE. Development of the pulmonary vasculature: current understanding and concepts for the future. Pulm Circ. 2013;3:176–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rafii S, Butler JM, Ding B-S. Angiocrine functions of organ-specific endothelial cells. Nature 2016;529:316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med. 2020;18:52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S, et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018;562:128–32.

    Article  CAS  PubMed  Google Scholar 

  29. Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18:8–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Tang N. May the force be with you. Dev Cell. 2018;47:673–4.

    Article  CAS  PubMed  Google Scholar 

  31. Askenazi D, Selewski D, Willig L, Warady B. Chapter 90. Acute kidney injury and chronic kidney disease. In: Gleason C, Juul S (eds). Avery’s disease of the newborn. 10th ed. Philadephia, PA: Elsevier; 2018. p. 1280–5.

  32. Awad AS, Okusa MD. Distant organ injury following acute kidney injury. Am J Physiol-Ren Physiol. 2007;293:F28–9.

    Article  CAS  Google Scholar 

  33. Oh WOM, Lind J. Renal function and blood volume in newborn infant related to placental transfusion. Acta Paediatr Scand. 1967;55:197–210.

    Article  Google Scholar 

  34. Arcilla RA, Oh W, Wallgren G, Hanson JS, Gessner IH, Lind J. Quantitative studies of the human neonatal circulation. II. Hemodynamic findings in early and late clamping of the umbilical cord. Acta Paediatr Scand 1967;179(Suppl):25.

    Google Scholar 

  35. Arcilla RA, Oh W, Lind J, Gessner IH. Pulmonary arterial pressures of newborn infants born with early and late clamping of the cord. Acta Paediatr. 1966;55:305–15.

    Article  CAS  Google Scholar 

  36. Nelle M, Zilow EP, Bastert G, Linderkamp O. Effect of Leboyer childbirth on cardiac output, cerebral and gastrointestinal blood flow velocities in full-term neonates. Am J Perinatol. 1995;12:212–6.

    Article  CAS  PubMed  Google Scholar 

  37. Oh W, Lind J. Body temperature of the newborn infant in relation to placental transfusion. Acta Paediatr Scand. 1967;172(Suppl):135.

    Google Scholar 

  38. Oh W, Lind J, Gessner IH. The circulatory and respiratory adaptation to early and late cord clamping in newborn infants. Acta Paediatr Scand. 1966;55:17–25.

    Article  CAS  PubMed  Google Scholar 

  39. Pietra GG, D’Amodio MD, Leventhal MM, Oh W, Braudo JL. Electron microscopy of cutaneous capillaries of newborn infants: effects of placental transfusion. Pediatrics 1968;42:678–83.

    Article  CAS  PubMed  Google Scholar 

  40. Plosa E, Guttentag SH. Lung development. In: Gleason C, Juul S (eds). Avery’s diseases of the newborn. 10th ed. Philadephia, PA: Elsevier; 2018. p. 586–99.

  41. Hooper SB, Harding R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharm Physiol. 1995;22:235–47.

    Article  CAS  Google Scholar 

  42. Jaykka S. Capillary erection and the structural appearance of fetal and neonatl lungs. Acta Paediatr. 1958;47:484–500.

    Article  CAS  PubMed  Google Scholar 

  43. Haworth SG, Hall SM, Chew M, Allen K. Thinning of fetal pulmonary arterial wall and postnatal remodelling: ultrastructural studies on the respiratory unit arteries of the pig. Virchows Arch A Pathol Anat Histopathol. 1987;411:161–71.

    Article  CAS  PubMed  Google Scholar 

  44. Hall SM, Haworth SG. Normal adaptation of pulmonary arterial intima to extrauterine life in the pig: ultrastructural studies. J Pathol. 1986;149:55–66.

    Article  CAS  PubMed  Google Scholar 

  45. Mercer JS, Skovgaard RL. Neonatal transitional physiology: a new paradigm. J Perinat Neonatal Nurs. 2002;15:56–75.

    Article  PubMed  Google Scholar 

  46. Avery ME, Frank NR, Gribetz I. The inflationary force produced by pulmonary vascular distension in excised lungs. J Clin Invest. 1959;38:456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weibel ER, Gomez DM. Architecture of the human lung: use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962;137:577–85.

    Article  CAS  PubMed  Google Scholar 

  48. Sherwood L. Human physiology: from cells to systems. 9th ed. Boston, MA, USA: Cengage Learning; 2016. 1 p.

  49. Sherwood L. Human physiology: from cells to systems. 8th ed. Belmont, CA: Brooks/Cole, Cengage Learning; 2013. 1 p.

  50. Giovannini N, Crippa B, Denaro E, Raffaeli G, Cortesi V, Consonni D, et al. The effect of delayed umbilical cord clamping on cord blood gas analysis in vaginal and caesarean‐delivered term newborns without fetal distress: a prospective observational study. BJOG Int J Obstet Gynaecol. 2020;127:405–13.

    Article  CAS  Google Scholar 

  51. Wiberg N, Källén K, Olofsson P. Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG Int J Obstet Gynaecol. 2008;115:697–703.

    Article  CAS  Google Scholar 

  52. Mokarami P, Wiberg N, Olofsson P. Hidden acidosis: an explanation of acid-base and lactate changes occurring in umbilical cord blood after delayed sampling. BJOG Int J Obstet Gynaecol. 2013;120:996–1002.

    Article  CAS  Google Scholar 

  53. Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, Te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA 2019;321:1165–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jackson JC, Truog WE, Standaert TA, Juul SE, Murphy JH, Chi EY, et al. Effect of high-frequency ventilation on the development of alveolar edema in premature monkeys at risk for hyaline membrane disease. Am Rev Respir Dis. 1991;143:865–71.

    Article  CAS  PubMed  Google Scholar 

  55. Barbagallo M, Dominguez LJ, Licata G, Shan J, Bing L, Karpinski E, et al. Vascular effects of progesterone: role of cellular calcium regulation. Hypertension. 2001;37:142–7.

    Article  CAS  PubMed  Google Scholar 

  56. Linderkamp O. Placental transfusion: determinants and effects. Clin Perinatol. 1982;9:559–92.

    Article  CAS  PubMed  Google Scholar 

  57. Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed. 2020;105:563–8.

  58. Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH, et al. Bronchopulmonary dysplasia. Nat Rev Dis Prim. 2019;5:78.

    Article  PubMed  Google Scholar 

  59. Haneline LS, Marshall KP, Clapp DW. The highest concentration of primitive hematopoietic progenitor cells in cord blood is found in extremely premature infants. Pediatr Res. 1996;39:820–5.

    Article  CAS  PubMed  Google Scholar 

  60. Wisgrill L, Schüller S, Bammer M, Berger A, Pollak A, Radke TF, et al. Hematopoietic stem cells in neonates: any differences between very preterm and term neonates? PLoS One. 2014;9:e106717.

  61. Makley AT, Goodman MD, Belizaire RM, Friend LAW, Johannigman JA, Dorlac WC, et al. Damage control resuscitation decreases systemic inflammation after hemorrhage. J Surg Res. 2012;175:e75–82.

    Article  PubMed  Google Scholar 

  62. Rajnik M, Salkowski CA, Thomas KE, Li Y-Y, Rollwagen FM, Vogel SN. Induction of early inflammatory gene expression in a murine model of nonresuscitated, fixed-volume hemorrhage. Shock Augusta Ga. 2002;17:322–8.

    Article  Google Scholar 

  63. Makley AT, Goodman MD, Friend LAW, Deters JS, Johannigman JA, Dorlac WC, et al. Resuscitation with fresh whole blood ameliorates the inflammatory response after hemorrhagic shock. J Trauma. 2010;68:305–11.

    PubMed  PubMed Central  Google Scholar 

  64. Carroll PD, Widness JA. Nonpharmacological, blood conservation techniques for preventing neonatal anemia—effective and promising strategies for reducing transfusion. Semin Perinatol. 2012;36:232–43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hellström W, Forssell L, Morsing E, Sävman K, Ley D. Neonatal clinical blood sampling led to major blood loss and was associated with bronchopulmonary dysplasia. Acta Paediatr. 2020;109:679–87.

    Article  PubMed  Google Scholar 

  66. Katheria AC. Neonatal resuscitation with an intact cord: current and ongoing trials. Children 2019;6:60.

    Article  PubMed Central  Google Scholar 

  67. Kuehne B, Kirchgaessner C, Becker I, Kuckelkorn M, Valter M, Kribs A, et al. Mask continuous positive airway pressure therapy with simultaneous extrauterine placental transfusion for resuscitation of preterm infants—a preliminary study. Biomed Hub. 2018;3:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Christensen RD, Lambert DK, Baer VL, Montgomery DP, Barney CK, Coulter DM, et al. Postponing or eliminating red blood cell transfusions of very low birth weight neonates by obtaining all baseline laboratory blood tests from otherwise discarded fetal blood in the placenta. Transfus (Paris). 2011;51:253–8.

    Article  Google Scholar 

  69. Carroll PD, Christensen RD. New and underutilized uses of umbilical cord blood in neonatal care. Matern Health Neonatol Perinatol. 2015;1:16.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rosebraugh MR, Widness JA, Nalbant D, Veng-Pedersen P. A mathematical modeling approach to quantify the role of phlebotomy losses and need for transfusions in neonatal anemia. Transfus (Paris). 2013;53:1353–60.

    Article  Google Scholar 

  71. Rabe H, Wacker A, Hülskamp G, Hörnig-Franz I, Schulze-Everding A, Harms E, et al. A randomised controlled trial of delayed cord clamping in very low birth weight preterm infants. Eur J Pediatr. 2000;159:775–7.

    Article  CAS  PubMed  Google Scholar 

  72. Rabe H, Alvarez J, Lawn C, Seddon P, Amess P. A management guideline to reduce the frequency of blood transfusion in very-low-birth-weight infants. Am J Perinatol. 2009;26:179–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank John (Jack) Widness, MD, for his generous and insightful reviews of this article.

Author information

Authors and Affiliations

Authors

Contributions

JSM conceived of the idea for the paper; all authors made substantial contributions, revised and reviewed the article, and finally approved the paper. All authors agree to be accountable for the information presented in the paper.

Corresponding author

Correspondence to Judith S. Mercer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercer, J.S., Erickson-Owens, D.A. & Rabe, H. Placental transfusion: may the “force” be with the baby. J Perinatol 41, 1495–1504 (2021). https://doi.org/10.1038/s41372-021-01055-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01055-0

This article is cited by

Search

Quick links