Skip to main content
Erschienen in: Journal of Materials Science 22/2017

31.07.2017 | Review

A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes

verfasst von: Kevin M. Holder, Ryan J. Smith, Jaime C. Grunlan

Erschienen in: Journal of Materials Science | Ausgabe 22/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As flammable polymeric materials become more ubiquitous in consumer goods, home furnishings, and transportation, there is a growing need for safe and effective flame retardant treatments. Recent studies suggest that certain flame retardant chemistries exhibit environmental and health problems, which has prompted the development of new flame retardant technologies. Layer-by-layer assembly has emerged as a promising technique for depositing environmentally-benign flame retardants on a variety of polymeric substrates. This technology has allowed the translation of common flame retardant mechanisms onto the surfaces of flammable polymers in the form of nanometer-scale coatings. Significant reductions in heat release rates and smoke release, as well as the ability to self-extinguish in open flame tests, have been observed on a variety of substrates. This review provides a comprehensive description of flame retardant multilayer nanocoatings on textiles, foams, and bulk polymers, as well as insight into the future direction of this growing field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Morgan AB, Wilkie CA (2007) Flame retardant polymer nanocomposites. Wiley, New JerseyCrossRef Morgan AB, Wilkie CA (2007) Flame retardant polymer nanocomposites. Wiley, New JerseyCrossRef
6.
Zurück zum Zitat Wilkie CA, Morgan AB (2010) Fire retardancy of polymeric materials. CRC Press, New York Wilkie CA, Morgan AB (2010) Fire retardancy of polymeric materials. CRC Press, New York
7.
Zurück zum Zitat Kilinc FS (2013) Handbook of fire resistant textiles. Woodhead Publishing, Cambridge Kilinc FS (2013) Handbook of fire resistant textiles. Woodhead Publishing, Cambridge
8.
Zurück zum Zitat Georlette P, Simons J, Costa L (2000) Halogen-containing fire-retardant compounds. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 245–284 Georlette P, Simons J, Costa L (2000) Halogen-containing fire-retardant compounds. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 245–284
9.
Zurück zum Zitat Georlette P (2001) Applications of halogen flame retardants. In: Harrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 264–292CrossRef Georlette P (2001) Applications of halogen flame retardants. In: Harrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 264–292CrossRef
10.
Zurück zum Zitat Murphy J (2001) Flame retardants: trends and new developments. Plast Addit Compd 3:16–20CrossRef Murphy J (2001) Flame retardants: trends and new developments. Plast Addit Compd 3:16–20CrossRef
11.
Zurück zum Zitat Litzenburger A (2000) Criteria for, and examples of optimal choice of flame retardants. Polym Polym Compos 8:581–592 Litzenburger A (2000) Criteria for, and examples of optimal choice of flame retardants. Polym Polym Compos 8:581–592
13.
Zurück zum Zitat Bourbigot S, Duquesne S (2010) Char formation and characterization. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 171–215 Bourbigot S, Duquesne S (2010) Char formation and characterization. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 171–215
14.
Zurück zum Zitat Pearce EM, Shalaby S, Barker R (1975) Flame-retardant polymeric materials. Springer, New York Pearce EM, Shalaby S, Barker R (1975) Flame-retardant polymeric materials. Springer, New York
15.
Zurück zum Zitat Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745CrossRef Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745CrossRef
16.
Zurück zum Zitat Aseeva RM, Zaikov G (1986) Combustion of polymer materials. Hanser Publications, Cleveland Aseeva RM, Zaikov G (1986) Combustion of polymer materials. Hanser Publications, Cleveland
17.
Zurück zum Zitat Lewin M, Weil E (2001) Mechanisms and modes of action in flame retardancy of polymers. In: Harrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 31–68CrossRef Lewin M, Weil E (2001) Mechanisms and modes of action in flame retardancy of polymers. In: Harrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, Cambridge, pp 31–68CrossRef
18.
Zurück zum Zitat Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Polym Rev 36:721–794CrossRef Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Polym Rev 36:721–794CrossRef
19.
Zurück zum Zitat Weil ED (2000) Synergists, adjuvants and antagonists in flame-retardant systems. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 115–145 Weil ED (2000) Synergists, adjuvants and antagonists in flame-retardant systems. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. CRC Press, New York, pp 115–145
21.
Zurück zum Zitat Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73CrossRef Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73CrossRef
23.
24.
Zurück zum Zitat Le Bras M, Wilkie CA, Bourbigot S (2005) Lammelar double hydroxides/polymer composites: a new class of fire retardant materials. In: Le Bras M, Bourbigot S, Duquesne S, Jama C, Wilkie CA (eds) Fire retardancy of polymers: new applications of mineral fillers. R Soc Chem, London, pp 19–41 Le Bras M, Wilkie CA, Bourbigot S (2005) Lammelar double hydroxides/polymer composites: a new class of fire retardant materials. In: Le Bras M, Bourbigot S, Duquesne S, Jama C, Wilkie CA (eds) Fire retardancy of polymers: new applications of mineral fillers. R Soc Chem, London, pp 19–41
25.
Zurück zum Zitat Zhou X, Ran S, Hu H, Fang Z (2016) Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim 125:199–204. doi:10.1007/s10973-016-5354-5 CrossRef Zhou X, Ran S, Hu H, Fang Z (2016) Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim 125:199–204. doi:10.​1007/​s10973-016-5354-5 CrossRef
29.
Zurück zum Zitat Levchik SV, Weil ED (2005) Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym Adv Technol 16:707–716. doi:10.1002/pat.645 CrossRef Levchik SV, Weil ED (2005) Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym Adv Technol 16:707–716. doi:10.​1002/​pat.​645 CrossRef
30.
Zurück zum Zitat Yang YM, Shi XC, Zhao RR (1999) Flame retardancy behavior of zinc borate. J Fire Sci 17:355–361CrossRef Yang YM, Shi XC, Zhao RR (1999) Flame retardancy behavior of zinc borate. J Fire Sci 17:355–361CrossRef
32.
Zurück zum Zitat Chao P, Li Y, Gu X et al (2015) Novel phosphorus-nitrogen-silicon flame retardants and their application in cycloaliphatic epoxy systems. Polym Chem 6:2977–2985. doi:10.1039/C4PY01724B CrossRef Chao P, Li Y, Gu X et al (2015) Novel phosphorus-nitrogen-silicon flame retardants and their application in cycloaliphatic epoxy systems. Polym Chem 6:2977–2985. doi:10.​1039/​C4PY01724B CrossRef
34.
Zurück zum Zitat Wesolek D, Gasiorowski R, Rojewski S, Walentowska J, Wojcik R (2016) New flexible flame retardant coatings based on siloxane resin and ethylene-vinyl chloride copolymer. Polymers 8:419CrossRef Wesolek D, Gasiorowski R, Rojewski S, Walentowska J, Wojcik R (2016) New flexible flame retardant coatings based on siloxane resin and ethylene-vinyl chloride copolymer. Polymers 8:419CrossRef
35.
Zurück zum Zitat Horrocks AR, Zhang S (2002) Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (proban CC®) flame retardant. Fire Mater 26:173–182. doi:10.1002/fam.794 CrossRef Horrocks AR, Zhang S (2002) Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (proban CC®) flame retardant. Fire Mater 26:173–182. doi:10.​1002/​fam.​794 CrossRef
39.
Zurück zum Zitat Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta JM (2012) Pyrolysis–combustion flow calorimetry: a powerful tool to evaluate the flame retardancy of polymers. In: Morgan AB, Wilkie CA, Nelson GL (eds) Fire and polymers VI: new advances in flame retardant chemistry and science. American Chemical Society, Washington, pp 407–425 Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta JM (2012) Pyrolysis–combustion flow calorimetry: a powerful tool to evaluate the flame retardancy of polymers. In: Morgan AB, Wilkie CA, Nelson GL (eds) Fire and polymers VI: new advances in flame retardant chemistry and science. American Chemical Society, Washington, pp 407–425
43.
Zurück zum Zitat Standard Test Method for Flame Resistance of Textiles (Vertical Test) (2015) ASTM International Standard Test Method for Flame Resistance of Textiles (Vertical Test) (2015) ASTM International
45.
Zurück zum Zitat Decher G, Schlenoff JB (2012) Multilayer thin films. Wiely-VCH Verlag & Co., WeinheimCrossRef Decher G, Schlenoff JB (2012) Multilayer thin films. Wiely-VCH Verlag & Co., WeinheimCrossRef
48.
Zurück zum Zitat Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835CrossRef Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835CrossRef
50.
Zurück zum Zitat Xiao FX, Pagliaro M, Xu YJ, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45:3088–3121. doi:10.1039/c5cs00781j CrossRef Xiao FX, Pagliaro M, Xu YJ, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45:3088–3121. doi:10.​1039/​c5cs00781j CrossRef
53.
Zurück zum Zitat Hagen DA, Box C, Greenlee S, Xiang F, Regev O, Grunlan JC (2014) High gas barrier imparted by similarly charged multilayers in nanobrick wall thin films. RSC Adv 4:18354–18359. doi:10.1039/C4RA01621A CrossRef Hagen DA, Box C, Greenlee S, Xiang F, Regev O, Grunlan JC (2014) High gas barrier imparted by similarly charged multilayers in nanobrick wall thin films. RSC Adv 4:18354–18359. doi:10.​1039/​C4RA01621A CrossRef
54.
Zurück zum Zitat Humood M, Chowdhury S, Song Y, Tzeng P, Grunlan JC, Polycarpou AA (2016) Nanomechanical behavior of high gas barrier multilayer thin films. ACS Appl Mater Interfaces 8:11128–11138. doi:10.1021/acsami.5b11478 CrossRef Humood M, Chowdhury S, Song Y, Tzeng P, Grunlan JC, Polycarpou AA (2016) Nanomechanical behavior of high gas barrier multilayer thin films. ACS Appl Mater Interfaces 8:11128–11138. doi:10.​1021/​acsami.​5b11478 CrossRef
55.
56.
Zurück zum Zitat Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester–cotton blends: flammability and combustion behaviour. Cellulose 19:1041–1050. doi:10.1007/s10570-012-9682-8 CrossRef Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester–cotton blends: flammability and combustion behaviour. Cellulose 19:1041–1050. doi:10.​1007/​s10570-012-9682-8 CrossRef
57.
Zurück zum Zitat Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451–2458. doi:10.1007/s10853-014-8800-4 CrossRef Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451–2458. doi:10.​1007/​s10853-014-8800-4 CrossRef
58.
Zurück zum Zitat Liu Y, Pan YT, Wang X et al (2016) Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability. Chem Eng J 294:167–175. doi:10.1016/j.cej.2016.02.080 CrossRef Liu Y, Pan YT, Wang X et al (2016) Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability. Chem Eng J 294:167–175. doi:10.​1016/​j.​cej.​2016.​02.​080 CrossRef
60.
Zurück zum Zitat Alongi J, Ciobanu M, Malucelli G (2012) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099. doi:10.1016/j.carbpol.2011.10.032 CrossRef Alongi J, Ciobanu M, Malucelli G (2012) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099. doi:10.​1016/​j.​carbpol.​2011.​10.​032 CrossRef
61.
65.
Zurück zum Zitat Hilt F, Gherardi N, Duday D, Berné A, Choquet P (2016) Efficient flame retardant thin films synthesized by atmospheric pressure PECVD through the high co-deposition rate of hexamethyldisiloxane and triethylphosphate on polycarbonate and polyamide-6 substrates. ACS Appl Mater Interfaces 8:12422–12433. doi:10.1021/acsami.6b01819 CrossRef Hilt F, Gherardi N, Duday D, Berné A, Choquet P (2016) Efficient flame retardant thin films synthesized by atmospheric pressure PECVD through the high co-deposition rate of hexamethyldisiloxane and triethylphosphate on polycarbonate and polyamide-6 substrates. ACS Appl Mater Interfaces 8:12422–12433. doi:10.​1021/​acsami.​6b01819 CrossRef
66.
Zurück zum Zitat Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219. doi:10.1021/Ma991645q CrossRef Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219. doi:10.​1021/​Ma991645q CrossRef
67.
Zurück zum Zitat Chang L, Kong XX, Wang F, Wang LY, Shen JC (2008) Layer-by-layer assembly of poly (N-acryloyl-N′-propylpiperazine) and poly (acrylic acid): effect of pH and temperature. Thin Solid Films 516:2125–2129. doi:10.1016/j.tsf.2007.07.188 CrossRef Chang L, Kong XX, Wang F, Wang LY, Shen JC (2008) Layer-by-layer assembly of poly (N-acryloyl-N′-propylpiperazine) and poly (acrylic acid): effect of pH and temperature. Thin Solid Films 516:2125–2129. doi:10.​1016/​j.​tsf.​2007.​07.​188 CrossRef
69.
Zurück zum Zitat Guin T, Krecker M, Hagen DA, Grunlan JC (2014) Thick growing multi layer nanobrick wall thin films: super gas barrier with very few layers. Langmuir 30:7057–7060. doi:10.1021/la501946f CrossRef Guin T, Krecker M, Hagen DA, Grunlan JC (2014) Thick growing multi layer nanobrick wall thin films: super gas barrier with very few layers. Langmuir 30:7057–7060. doi:10.​1021/​la501946f CrossRef
70.
Zurück zum Zitat McAloney RA, Sinyor M, Dudnik V, Goh MC (2001) Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir 17:6655–6663. doi:10.1021/la010136q CrossRef McAloney RA, Sinyor M, Dudnik V, Goh MC (2001) Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir 17:6655–6663. doi:10.​1021/​la010136q CrossRef
71.
72.
74.
Zurück zum Zitat Dawidczyk TJ, Walton MD, Jang WS, Grunlan JC (2008) Layer-by-layer assembly of UV-resistant poly(3,4-ethylenedioxythiophene) thin films. Langmuir 24:8314–8318. doi:10.1021/la800967x CrossRef Dawidczyk TJ, Walton MD, Jang WS, Grunlan JC (2008) Layer-by-layer assembly of UV-resistant poly(3,4-ethylenedioxythiophene) thin films. Langmuir 24:8314–8318. doi:10.​1021/​la800967x CrossRef
75.
76.
Zurück zum Zitat Podsiadlo P, Liu ZQ, Paterson D, Messersmith PB, Kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocomposite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylalanine polymer. Adv Mater 19:949–955. doi:10.1002/adma.200602706 CrossRef Podsiadlo P, Liu ZQ, Paterson D, Messersmith PB, Kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocomposite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylalanine polymer. Adv Mater 19:949–955. doi:10.​1002/​adma.​200602706 CrossRef
77.
Zurück zum Zitat Wu S, Garfield LB, Rupert NE, Grady BP, Funkhouser GP (2010) Strength improvement via coating of a cylindrical hole by layer-by-layer assembled polymer particles. ACS Appl Mater Interfaces 2:1220–1227. doi:10.1021/am1000618 CrossRef Wu S, Garfield LB, Rupert NE, Grady BP, Funkhouser GP (2010) Strength improvement via coating of a cylindrical hole by layer-by-layer assembled polymer particles. ACS Appl Mater Interfaces 2:1220–1227. doi:10.​1021/​am1000618 CrossRef
78.
Zurück zum Zitat Yilmaz MD (2016) Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics. Carbohydr Polym 146:174–180. doi:10.1016/j.carbpol.2016.03.037 CrossRef Yilmaz MD (2016) Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics. Carbohydr Polym 146:174–180. doi:10.​1016/​j.​carbpol.​2016.​03.​037 CrossRef
79.
Zurück zum Zitat Dang X, Gu L, Qi J et al (2016) Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc Natl Acad Sci USA 113:5179–5184. doi:10.1073/pnas.1521175113 CrossRef Dang X, Gu L, Qi J et al (2016) Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc Natl Acad Sci USA 113:5179–5184. doi:10.​1073/​pnas.​1521175113 CrossRef
80.
Zurück zum Zitat Kim Y, Ryu TI, Ok KH et al (2015) Inverted Layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater 25:4580–4589. doi:10.1002/adfm.201501046 CrossRef Kim Y, Ryu TI, Ok KH et al (2015) Inverted Layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater 25:4580–4589. doi:10.​1002/​adfm.​201501046 CrossRef
81.
Zurück zum Zitat Cho C, Wallace KL, Tzeng P, Hsu J-H, Yu C, Grunlan JC (2016) Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials. Adv Energy Mater 6:1502168–1502176. doi:10.1002/aenm.201502168 CrossRef Cho C, Wallace KL, Tzeng P, Hsu J-H, Yu C, Grunlan JC (2016) Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials. Adv Energy Mater 6:1502168–1502176. doi:10.​1002/​aenm.​201502168 CrossRef
82.
Zurück zum Zitat Priolo MA, Holder KM, Guin T, Grunlan JC (2015) Recent advances in gas barrier thin films via layer-by-layer assembly of polymers and platelets. Macromol Rapid Commun 36:866–879. doi:10.1002/marc.201500055 CrossRef Priolo MA, Holder KM, Guin T, Grunlan JC (2015) Recent advances in gas barrier thin films via layer-by-layer assembly of polymers and platelets. Macromol Rapid Commun 36:866–879. doi:10.​1002/​marc.​201500055 CrossRef
83.
Zurück zum Zitat Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881–887. doi:10.1021/cm011236k CrossRef Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881–887. doi:10.​1021/​cm011236k CrossRef
84.
Zurück zum Zitat Li YC, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347. doi:10.1021/am900484q CrossRef Li YC, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347. doi:10.​1021/​am900484q CrossRef
85.
Zurück zum Zitat Srikulkit K, Iamsamai C, Dubas ST (2006) Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Met Mater Miner 16:41–45 Srikulkit K, Iamsamai C, Dubas ST (2006) Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Met Mater Miner 16:41–45
87.
Zurück zum Zitat Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromol 13:2843–2848. doi:10.1021/bm300873b CrossRef Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromol 13:2843–2848. doi:10.​1021/​bm300873b CrossRef
88.
Zurück zum Zitat Zhang T, Yan HQ, Wang LL, Fang ZP (2013) Controlled formation of self-extinguishing intumescent doating on ramie fabric via layer-by-layer assembly. Ind Eng Chem Res 52:6138–6146. doi:10.1021/ie3031554 CrossRef Zhang T, Yan HQ, Wang LL, Fang ZP (2013) Controlled formation of self-extinguishing intumescent doating on ramie fabric via layer-by-layer assembly. Ind Eng Chem Res 52:6138–6146. doi:10.​1021/​ie3031554 CrossRef
90.
Zurück zum Zitat Pan HF, Song L, Ma LY, Pan Y, Liew KM, Hu Y (2014) Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21:2995–3006. doi:10.1007/s10570-014-0276-5 CrossRef Pan HF, Song L, Ma LY, Pan Y, Liew KM, Hu Y (2014) Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21:2995–3006. doi:10.​1007/​s10570-014-0276-5 CrossRef
91.
Zurück zum Zitat Negrell-Guirao C, Carosio F, Boutevin B, Cottet H, Loubat C (2013) Phosphonated oligoallylamine: synthesis, characterization in water, and development of layer by layer assembly. J Polym Sci Polym Phys 51:1244–1251. doi:10.1002/polb.23322 CrossRef Negrell-Guirao C, Carosio F, Boutevin B, Cottet H, Loubat C (2013) Phosphonated oligoallylamine: synthesis, characterization in water, and development of layer by layer assembly. J Polym Sci Polym Phys 51:1244–1251. doi:10.​1002/​polb.​23322 CrossRef
92.
93.
Zurück zum Zitat Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr Polym 115:516–524. doi:10.1016/j.carbpol.2014.08.084 CrossRef Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr Polym 115:516–524. doi:10.​1016/​j.​carbpol.​2014.​08.​084 CrossRef
95.
Zurück zum Zitat Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY (2015) Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv 5:10647–10655. doi:10.1039/c4ra14943b CrossRef Wang X, Romero MQ, Zhang XQ, Wang R, Wang DY (2015) Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Adv 5:10647–10655. doi:10.​1039/​c4ra14943b CrossRef
97.
Zurück zum Zitat Carosio F, Fontaine G, Alongi J, Bourbigot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167. doi:10.1021/acsami.5b02507 CrossRef Carosio F, Fontaine G, Alongi J, Bourbigot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167. doi:10.​1021/​acsami.​5b02507 CrossRef
100.
Zurück zum Zitat Li YC, Schulz J, Mannen S et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337. doi:10.1021/nn100467e CrossRef Li YC, Schulz J, Mannen S et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337. doi:10.​1021/​nn100467e CrossRef
101.
104.
105.
Zurück zum Zitat Huang GB, Liang HD, Wang X, Gao JR (2012) Poly(acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind Eng Chem Res 51:12299–12309. doi:10.1021/ie300820k Huang GB, Liang HD, Wang X, Gao JR (2012) Poly(acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind Eng Chem Res 51:12299–12309. doi:10.​1021/​ie300820k
106.
Zurück zum Zitat Huang GB, Yang JG, Gao JR, Wang X (2012) Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind Eng Chem Res 51:12355–12366. doi:10.1021/ie301911t Huang GB, Yang JG, Gao JR, Wang X (2012) Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind Eng Chem Res 51:12355–12366. doi:10.​1021/​ie301911t
107.
Zurück zum Zitat Cheng DS, Liu XY, Wu JH, Yu WD (2012) Self-assembled multilayer of silver nanoparticles on cotton fabric and its flame-retardant property. Ind Textila 63:115–120 Cheng DS, Liu XY, Wu JH, Yu WD (2012) Self-assembled multilayer of silver nanoparticles on cotton fabric and its flame-retardant property. Ind Textila 63:115–120
108.
Zurück zum Zitat Wang LL, Zhang T, Yan HQ, Peng M, Fang ZP (2013) Modification of ramie fabric with a metal-ion-doped flame-retardant coating. J Appl Polym Sci 129:2986–2997. doi:10.1002/app.39015 CrossRef Wang LL, Zhang T, Yan HQ, Peng M, Fang ZP (2013) Modification of ramie fabric with a metal-ion-doped flame-retardant coating. J Appl Polym Sci 129:2986–2997. doi:10.​1002/​app.​39015 CrossRef
109.
Zurück zum Zitat Zhang T, Yan HQ, Peng M, Wang LL, Ding HL, Fang ZP (2013) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5:3013–3021. doi:10.1039/c3nr34020a CrossRef Zhang T, Yan HQ, Peng M, Wang LL, Ding HL, Fang ZP (2013) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5:3013–3021. doi:10.​1039/​c3nr34020a CrossRef
110.
Zurück zum Zitat Pan HF, Wang W, Pan Y et al (2015) Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior. Cellulose 22:911–923. doi:10.1007/s10570-014-0536-4 CrossRef Pan HF, Wang W, Pan Y et al (2015) Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior. Cellulose 22:911–923. doi:10.​1007/​s10570-014-0536-4 CrossRef
111.
Zurück zum Zitat Chen XX, Fang F, Zhang X et al (2016) Flame-retardant, electrically conductive and antimicrobial multifunctional coating on cotton fabric via layer-by-layer assembly technique. RSC Adv 6:27669–27676. doi:10.1039/c5ra26914h CrossRef Chen XX, Fang F, Zhang X et al (2016) Flame-retardant, electrically conductive and antimicrobial multifunctional coating on cotton fabric via layer-by-layer assembly technique. RSC Adv 6:27669–27676. doi:10.​1039/​c5ra26914h CrossRef
114.
Zurück zum Zitat Chang SC, Slopek RP, Condon B, Grunlan JC (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53:3805–3812. doi:10.1021/ie403992x CrossRef Chang SC, Slopek RP, Condon B, Grunlan JC (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53:3805–3812. doi:10.​1021/​ie403992x CrossRef
115.
Zurück zum Zitat Mateos AJ, Cain AA, Grunlan JC (2014) Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Ind Eng Chem Res 53:6409–6416. doi:10.1021/ie500122u CrossRef Mateos AJ, Cain AA, Grunlan JC (2014) Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Ind Eng Chem Res 53:6409–6416. doi:10.​1021/​ie500122u CrossRef
116.
Zurück zum Zitat Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC (2016) Microintumescent mechanism of flame-retardant water-based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 133:43783. doi:10.1002/app.43783 CrossRef Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC (2016) Microintumescent mechanism of flame-retardant water-based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 133:43783. doi:10.​1002/​app.​43783 CrossRef
117.
Zurück zum Zitat Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030. doi:10.1007/s10570-014-0286-3 CrossRef Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030. doi:10.​1007/​s10570-014-0286-3 CrossRef
118.
Zurück zum Zitat Carosio F, Alongi J (2015) Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing. RSC Adv 5:71482–71490. doi:10.1039/c5ra11856e CrossRef Carosio F, Alongi J (2015) Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing. RSC Adv 5:71482–71490. doi:10.​1039/​c5ra11856e CrossRef
119.
Zurück zum Zitat Li Z-F, Zhang C-J, Cui L, Zhu P, Yan C, Liu Y (2017) Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly. J Anal Appl Pyrol 123:216–223. doi:10.1016/j.jaap.2016.11.026 CrossRef Li Z-F, Zhang C-J, Cui L, Zhu P, Yan C, Liu Y (2017) Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly. J Anal Appl Pyrol 123:216–223. doi:10.​1016/​j.​jaap.​2016.​11.​026 CrossRef
120.
Zurück zum Zitat Wang W, Wang X, Pan Y et al (2017) Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics. Ind Eng Chem Res 56:6664–6670. doi:10.1021/acs.iecr.7b01293 CrossRef Wang W, Wang X, Pan Y et al (2017) Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics. Ind Eng Chem Res 56:6664–6670. doi:10.​1021/​acs.​iecr.​7b01293 CrossRef
121.
Zurück zum Zitat Yan H, Li N, Fang Z, Wang H (2017) Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics. J Appl Polym Sci 134:44795. doi:10.1002/app.44795 Yan H, Li N, Fang Z, Wang H (2017) Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics. J Appl Polym Sci 134:44795. doi:10.​1002/​app.​44795
122.
Zurück zum Zitat Yu X, Pan Y, Wang D, Yuan B, Song L, Hu Y (2017) Fabrication and properties of biobased layer-by-layer coated ramie fabric-reinforced unsaturated polyester resin composites. Ind Eng Chem Res 56:4758–4767. doi:10.1021/acs.iecr.7b00101 CrossRef Yu X, Pan Y, Wang D, Yuan B, Song L, Hu Y (2017) Fabrication and properties of biobased layer-by-layer coated ramie fabric-reinforced unsaturated polyester resin composites. Ind Eng Chem Res 56:4758–4767. doi:10.​1021/​acs.​iecr.​7b00101 CrossRef
123.
Zurück zum Zitat Malucelli G (2016) Surface-engineered fire protective coatings for fabrics through sol-fel and layer-by-layer methods: an overview. Coatings 6:33CrossRef Malucelli G (2016) Surface-engineered fire protective coatings for fabrics through sol-fel and layer-by-layer methods: an overview. Coatings 6:33CrossRef
124.
Zurück zum Zitat Guin T, Krecker M, Milhorn A, Hagen DA, Stevens B, Grunlan JC (2015) Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films. Adv Mater Interfaces 2:1500214. doi:10.1002/Admi.201500214 CrossRef Guin T, Krecker M, Milhorn A, Hagen DA, Stevens B, Grunlan JC (2015) Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films. Adv Mater Interfaces 2:1500214. doi:10.​1002/​Admi.​201500214 CrossRef
125.
127.
Zurück zum Zitat Dogan M, Bayramli E (2011) Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polym Adv Technol 22:1628–1632. doi:10.1002/pat.1650 CrossRef Dogan M, Bayramli E (2011) Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polym Adv Technol 22:1628–1632. doi:10.​1002/​pat.​1650 CrossRef
128.
Zurück zum Zitat Dogan M, Bayramli E (2014) The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamide-6. Fire Mater 38:92–99. doi:10.1002/fam.2165 CrossRef Dogan M, Bayramli E (2014) The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamide-6. Fire Mater 38:92–99. doi:10.​1002/​fam.​2165 CrossRef
129.
131.
134.
135.
136.
Zurück zum Zitat Narkhede M, Thota S, Mosurkal R, Muller WS, Kumar J (2016) Layer-by-layer assembly of halogen-free polymeric materials on nylon/cotton blend for flame retardant applications. Fire Mater 40:206–218. doi:10.1002/fam.2280 CrossRef Narkhede M, Thota S, Mosurkal R, Muller WS, Kumar J (2016) Layer-by-layer assembly of halogen-free polymeric materials on nylon/cotton blend for flame retardant applications. Fire Mater 40:206–218. doi:10.​1002/​fam.​2280 CrossRef
138.
Zurück zum Zitat Carosio F, Alongi J, Malucelli G (2011) alpha-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J Mater Chem 21:10370–10376. doi:10.1039/c1jm11287b CrossRef Carosio F, Alongi J, Malucelli G (2011) alpha-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J Mater Chem 21:10370–10376. doi:10.​1039/​c1jm11287b CrossRef
139.
Zurück zum Zitat Apaydin K, Laachachi A, Ball V, Jimenezd M, Bourbigot S, Ruch D (2015) Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloid Surface A 469:1–10. doi:10.1016/j.colsurfa.2014.12.021 CrossRef Apaydin K, Laachachi A, Ball V, Jimenezd M, Bourbigot S, Ruch D (2015) Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloid Surface A 469:1–10. doi:10.​1016/​j.​colsurfa.​2014.​12.​021 CrossRef
140.
Zurück zum Zitat Pan Y, Wang W, Pan H, Zhan J, Hu Y (2016) Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self-assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of polyethylene terephthalate (PET) fabric. RSC Adv 6:53625–53634CrossRef Pan Y, Wang W, Pan H, Zhan J, Hu Y (2016) Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self-assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of polyethylene terephthalate (PET) fabric. RSC Adv 6:53625–53634CrossRef
142.
Zurück zum Zitat Kumar Kundu C, Wang W, Zhou S et al (2017) A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate. Carbohydr Polym 166:131–138. doi:10.1016/j.carbpol.2017.02.084 CrossRef Kumar Kundu C, Wang W, Zhou S et al (2017) A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate. Carbohydr Polym 166:131–138. doi:10.​1016/​j.​carbpol.​2017.​02.​084 CrossRef
143.
Zurück zum Zitat Wattanatanom W, Churuchinda S, Potiyaraj P (2017) Intumescent flame retardant finishing of polyester fabrics via the layer-by-layer assembly technique. Int J Cloth Sci Technol 29:96–105. doi:10.1108/IJCST-07-2015-0079 CrossRef Wattanatanom W, Churuchinda S, Potiyaraj P (2017) Intumescent flame retardant finishing of polyester fabrics via the layer-by-layer assembly technique. Int J Cloth Sci Technol 29:96–105. doi:10.​1108/​IJCST-07-2015-0079 CrossRef
144.
Zurück zum Zitat Alongi J, Carosio F, Kiekens P (2016) Recent advances in the design of water based-flame retardant coatings for polyester and polyester–cotton blends. Polymers 8:357CrossRef Alongi J, Carosio F, Kiekens P (2016) Recent advances in the design of water based-flame retardant coatings for polyester and polyester–cotton blends. Polymers 8:357CrossRef
147.
Zurück zum Zitat Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1649. doi:10.1021/am2017915 CrossRef Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1649. doi:10.​1021/​am2017915 CrossRef
149.
Zurück zum Zitat Li YC, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J Mater Chem A 1:12987–12997. doi:10.1039/c3ta11936j CrossRef Li YC, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J Mater Chem A 1:12987–12997. doi:10.​1039/​c3ta11936j CrossRef
150.
Zurück zum Zitat Kim YS, Li YC, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6:2146–2152. doi:10.1021/am405259n CrossRef Kim YS, Li YC, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6:2146–2152. doi:10.​1021/​am405259n CrossRef
151.
Zurück zum Zitat Li Y-C, Yang Y-H, Kim YS, Shields J, Davis RD (2014) DNA-based nanocomposite bio-doatings for fire retarding polyurethane foam. Green Mater 2:144–152CrossRef Li Y-C, Yang Y-H, Kim YS, Shields J, Davis RD (2014) DNA-based nanocomposite bio-doatings for fire retarding polyurethane foam. Green Mater 2:144–152CrossRef
152.
Zurück zum Zitat Pan HF, Pan Y, Wang W, Song L, Hu Y, Liew KM (2014) Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind Eng Chem Res 53:14315–14321. doi:10.1021/ie502215p CrossRef Pan HF, Pan Y, Wang W, Song L, Hu Y, Liew KM (2014) Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind Eng Chem Res 53:14315–14321. doi:10.​1021/​ie502215p CrossRef
153.
Zurück zum Zitat Cain AA, Plummer MGB, Murray SE, Bolling L, Regev O, Grunlan JC (2014) Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer. J Mater Chem A 2:17609–17617. doi:10.1039/c4ta03541k CrossRef Cain AA, Plummer MGB, Murray SE, Bolling L, Regev O, Grunlan JC (2014) Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer. J Mater Chem A 2:17609–17617. doi:10.​1039/​c4ta03541k CrossRef
154.
Zurück zum Zitat Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6:16903–16908. doi:10.1021/am504455k CrossRef Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6:16903–16908. doi:10.​1021/​am504455k CrossRef
155.
Zurück zum Zitat Yang YH, Li YC, Shields J, Davis RD (2015) Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J Appl Polym Sci. doi:10.1002/App.41767 Yang YH, Li YC, Shields J, Davis RD (2015) Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams. J Appl Polym Sci. doi:10.​1002/​App.​41767
156.
157.
Zurück zum Zitat Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Inter 7:101–111. doi:10.1021/am507045g CrossRef Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Inter 7:101–111. doi:10.​1021/​am507045g CrossRef
158.
Zurück zum Zitat Holder KM, Cain AA, Plummer MG et al (2016) Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol Mater Eng 301:665–673. doi:10.1002/mame.201500327 CrossRef Holder KM, Cain AA, Plummer MG et al (2016) Carbon nanotube multilayer nanocoatings prevent flame spread on flexible polyurethane foam. Macromol Mater Eng 301:665–673. doi:10.​1002/​mame.​201500327 CrossRef
159.
Zurück zum Zitat Pan HF, Lu YS, Song L, Zhang XT, Hu Y (2016) Construction of layer-by-layer coating based on graphene oxide/beta-FeOOH nanorods and its synergistic effect on improving flame retardancy of flexible polyurethane foam. Compos Sci Technol 129:116–122. doi:10.1016/j.compscitech.2016.04.018 CrossRef Pan HF, Lu YS, Song L, Zhang XT, Hu Y (2016) Construction of layer-by-layer coating based on graphene oxide/beta-FeOOH nanorods and its synergistic effect on improving flame retardancy of flexible polyurethane foam. Compos Sci Technol 129:116–122. doi:10.​1016/​j.​compscitech.​2016.​04.​018 CrossRef
160.
Zurück zum Zitat Zhang X, Shen Q, Zhang X, Pan H, Lu Y (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51:10361–10374. doi:10.1007/s10853-016-0247-3 CrossRef Zhang X, Shen Q, Zhang X, Pan H, Lu Y (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51:10361–10374. doi:10.​1007/​s10853-016-0247-3 CrossRef
161.
Zurück zum Zitat Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS Macro Lett 2:361–365. doi:10.1021/mz400105e CrossRef Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS Macro Lett 2:361–365. doi:10.​1021/​mz400105e CrossRef
162.
Zurück zum Zitat Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv 4:16674–16680. doi:10.1039/c4ra01343c CrossRef Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv 4:16674–16680. doi:10.​1039/​c4ra01343c CrossRef
163.
Zurück zum Zitat Wang X, Pan YT, Wan JT, Wang DY (2014) An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Adv 4:46164–46169. doi:10.1039/c4ra07972h CrossRef Wang X, Pan YT, Wan JT, Wang DY (2014) An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Adv 4:46164–46169. doi:10.​1039/​c4ra07972h CrossRef
165.
Zurück zum Zitat Carosio F, Alongi J (2016) Ultra-fast layer-by-layer approach for depositing flame fetardant coatings on flexible PU foams within seconds. ACS Appl Mater Interfaces 8:6315–6319. doi:10.1021/acsami.6b00598 CrossRef Carosio F, Alongi J (2016) Ultra-fast layer-by-layer approach for depositing flame fetardant coatings on flexible PU foams within seconds. ACS Appl Mater Interfaces 8:6315–6319. doi:10.​1021/​acsami.​6b00598 CrossRef
169.
Zurück zum Zitat Deng S-B, Liao W, Yang J-C, Cao Z, Wang Y-Z (2016) Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Ind Eng Chem Res 55:7239–7248CrossRef Deng S-B, Liao W, Yang J-C, Cao Z, Wang Y-Z (2016) Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Ind Eng Chem Res 55:7239–7248CrossRef
170.
Zurück zum Zitat Laachachi A, Ball V, Apaydin K, Toniazzo V, Ruch D (2011) Diffusion of polyphosphates into (poly(allylamine)–montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir 27:13879–13887. doi:10.1021/la203252q CrossRef Laachachi A, Ball V, Apaydin K, Toniazzo V, Ruch D (2011) Diffusion of polyphosphates into (poly(allylamine)–montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir 27:13879–13887. doi:10.​1021/​la203252q CrossRef
171.
Zurück zum Zitat Apaydin K, Laachachi A, Fouquet T, Jimenez M, Bourbigot S, Ruch D (2014) Mechanistic investigation of a flame retardant coating made by layer-by-layer assembly. RSC Adv 4:43326–43334. doi:10.1039/c4ra08500k CrossRef Apaydin K, Laachachi A, Fouquet T, Jimenez M, Bourbigot S, Ruch D (2014) Mechanistic investigation of a flame retardant coating made by layer-by-layer assembly. RSC Adv 4:43326–43334. doi:10.​1039/​c4ra08500k CrossRef
173.
Zurück zum Zitat Farag ZR, Friedrich JF, Kruger S, Hidde G, Moustapha ME (2016) Adhesion promotion of thick polyphosphate-poly(allylamine) films onto polyolefin substrates by plasma polymers. J Adhes Sci Technol 30:231–246. doi:10.1080/01694243.2015.1095626 CrossRef Farag ZR, Friedrich JF, Kruger S, Hidde G, Moustapha ME (2016) Adhesion promotion of thick polyphosphate-poly(allylamine) films onto polyolefin substrates by plasma polymers. J Adhes Sci Technol 30:231–246. doi:10.​1080/​01694243.​2015.​1095626 CrossRef
174.
Zurück zum Zitat Lin ZY, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346. doi:10.1007/s10570-007-9188-y CrossRef Lin ZY, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346. doi:10.​1007/​s10570-007-9188-y CrossRef
175.
Zurück zum Zitat Wei C, Zeng SH, Tan YY, Wang W, Lv J, Liu HX (2015) Impact of layer-by-layer self-assembly clay-based nanocoating on flame retardant properties of sisal fiber cellulose microcrystals. Adv Mater Sci Eng. doi:10.1155/2015/691290 Wei C, Zeng SH, Tan YY, Wang W, Lv J, Liu HX (2015) Impact of layer-by-layer self-assembly clay-based nanocoating on flame retardant properties of sisal fiber cellulose microcrystals. Adv Mater Sci Eng. doi:10.​1155/​2015/​691290
176.
Zurück zum Zitat Koklukaya O, Carosio F, Grunlan JC, Wagberg L (2015) Flame-retardant paper from wood fibers functionalized via layer-by-layer assembly. ACS Appl Mater Interfaces 7:23750–23759. doi:10.1021/acsami.5b08105 CrossRef Koklukaya O, Carosio F, Grunlan JC, Wagberg L (2015) Flame-retardant paper from wood fibers functionalized via layer-by-layer assembly. ACS Appl Mater Interfaces 7:23750–23759. doi:10.​1021/​acsami.​5b08105 CrossRef
177.
Zurück zum Zitat Jiang SD, Bai ZM, Tang G et al (2014) Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl Mater Interfaces 6:14076–14086. doi:10.1021/am503412y CrossRef Jiang SD, Bai ZM, Tang G et al (2014) Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl Mater Interfaces 6:14076–14086. doi:10.​1021/​am503412y CrossRef
178.
Zurück zum Zitat Wang YL, Yang XM, Peng H et al (2016) Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin. ACS Appl Mater Interfaces 8:9925–9935. doi:10.1021/acsami.6b00998 CrossRef Wang YL, Yang XM, Peng H et al (2016) Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin. ACS Appl Mater Interfaces 8:9925–9935. doi:10.​1021/​acsami.​6b00998 CrossRef
180.
Zurück zum Zitat Ferreira M, Rubner MF (1995) Molecular-level processing of conjugated polymers 1. Layer-by-layer manipulation of conjugated polyions. Macromolecules 28:7107–7114. doi:10.1021/ma00125a012 CrossRef Ferreira M, Rubner MF (1995) Molecular-level processing of conjugated polymers 1. Layer-by-layer manipulation of conjugated polyions. Macromolecules 28:7107–7114. doi:10.​1021/​ma00125a012 CrossRef
181.
Zurück zum Zitat Lvov Y, Decher G, Moehwald H (1993) Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–486. doi:10.1021/la00026a020 CrossRef Lvov Y, Decher G, Moehwald H (1993) Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–486. doi:10.​1021/​la00026a020 CrossRef
183.
Zurück zum Zitat Song Y, Hagen DA, Qin S, Holder KM, Falke K, Grunlan JC (2016) Edge charge neutralization of clay for improved oxygen fas barrier in multilayer nanobrick wall thin films. ACS Appl Mater Interfaces 8:34784–34790. doi:10.1021/acsami.6b12937 CrossRef Song Y, Hagen DA, Qin S, Holder KM, Falke K, Grunlan JC (2016) Edge charge neutralization of clay for improved oxygen fas barrier in multilayer nanobrick wall thin films. ACS Appl Mater Interfaces 8:34784–34790. doi:10.​1021/​acsami.​6b12937 CrossRef
184.
Zurück zum Zitat Hagen DA, Foster B, Stevens B, Grunlan JC (2014) Shift-time polyelectrolyte multilayer assembly: fast film growth and high gas barrier with fewer layers by adjusting deposition time. ACS Macro Lett 3:663–666. doi:10.1021/mz500276r CrossRef Hagen DA, Foster B, Stevens B, Grunlan JC (2014) Shift-time polyelectrolyte multilayer assembly: fast film growth and high gas barrier with fewer layers by adjusting deposition time. ACS Macro Lett 3:663–666. doi:10.​1021/​mz500276r CrossRef
185.
Zurück zum Zitat Saetia K, Schnorr JM, Mannarino MM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24:492–502. doi:10.1002/adfm.201302344 CrossRef Saetia K, Schnorr JM, Mannarino MM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24:492–502. doi:10.​1002/​adfm.​201302344 CrossRef
186.
Zurück zum Zitat Stewart-Clark SS, Lvov YM, Mills DK (2011) Ultrasonic nebulization-assisted layer-by-layer assembly for spray coating of multilayered, multicomponent, bioactive nanostructures. J Coat Technol Res 8:275–281. doi:10.1007/s11998-010-9304-z CrossRef Stewart-Clark SS, Lvov YM, Mills DK (2011) Ultrasonic nebulization-assisted layer-by-layer assembly for spray coating of multilayered, multicomponent, bioactive nanostructures. J Coat Technol Res 8:275–281. doi:10.​1007/​s11998-010-9304-z CrossRef
187.
Zurück zum Zitat Kovacs JR, Liu C, Hammond PT (2015) Spray Layer-by-layer assembled clay composite thin films as selective layers in reverse osmosis membranes. ACS Appl Mater Inter 7:13375–13383. doi:10.1021/acsami.5b01879 CrossRef Kovacs JR, Liu C, Hammond PT (2015) Spray Layer-by-layer assembled clay composite thin films as selective layers in reverse osmosis membranes. ACS Appl Mater Inter 7:13375–13383. doi:10.​1021/​acsami.​5b01879 CrossRef
188.
189.
Zurück zum Zitat Carosio F, Di Blasio A, Cuttica F, Alongi J, Frache A, Malucelli G (2013) Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures. Ind Eng Chem Res 52:9544–9550. doi:10.1021/ie4011244 CrossRef Carosio F, Di Blasio A, Cuttica F, Alongi J, Frache A, Malucelli G (2013) Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures. Ind Eng Chem Res 52:9544–9550. doi:10.​1021/​ie4011244 CrossRef
Metadaten
Titel
A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes
verfasst von
Kevin M. Holder
Ryan J. Smith
Jaime C. Grunlan
Publikationsdatum
31.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1390-1

Weitere Artikel der Ausgabe 22/2017

Journal of Materials Science 22/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.