Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and workforce development, said Amy Friedlander, acting director of the NSF’s Office of Advanced Cybersecurity (OAC) in the final plenary session of PEARC20. On July 30, 2020, Friedlander explained how OAC’s combined focus on networking, cybersecurity and computing resources, as well as its possibly less-well-known concentration on data, software, and learning, is aimed at ensuring the nation’s CI develops with all of those imperatives accounted for.

The Practice and Experience in Advanced Research Computing (PEARC) Conference Series is a community-driven effort built on the successes of the past, with the aim to grow and be more inclusive by involving additional local, regional, national, and international CI and research computing partners spanning academia, government and industry. Sponsored by the ACM, the world’s largest educational and scientific computing society, PEARC20 took place between July 27 and 31.

This year’s theme, “Catch the Wave,” embodied the spirit of the community’s drive to stay on pace and in front of all the new waves in technology, analytics, and a globally connected and diverse workforce. Scientific discovery and innovation require a robust, innovative and resilient CI to support the critical research required to address world challenges in climate change, population, health, energy and environment.

It’s About Machines

When most people think of OAC, arguably the ecosystem of advanced computing resources funded by the office springs first to mind. Friedlander charted out the latest of these systems, and how OAC’s thinking about funding them has evolved. OAC currently funds three major classes of program: Leadership Class, Innovative Systems & Services, and Coordination Services.

The NSF-funded Frontera supercomputer of the Texas Advanced Computing Center at UT Austin is ranked #8 fastest in the world and #1 for academic systems, according to the June 2020 Top500 rankings. (Credit: TACC)

OAC has funded one “Leadership Class” system, Frontera at the Texas Advanced Computing Center. As the name suggests, this system began its operational life as an extreme-scale machine near the top of what is possible with HPC, supporting research across the NSF’s directorates. As examples, Friedlander highlighted work by Alexander Tchekhovskoy at Northwestern University in astrophysics, Ivan Soltesz at Stanford in neuroscience, and Paul Morin at the University of Minnesota in analysis of polar satellite imagery that utilized Frontera.

For the first time in 2019, OAC funded two types of system within the Innovative Systems & Services class: “Capacity Systems” and “Testbed Systems.” The latter are smaller, experimental systems, the former are ones intended to go into operation and to support major work by researchers. The smaller testbed systems are prototypes to provide an on-ramp for new capabilities in OAC’s operational systems. Examples of testbeds include Ookami at Stony Brook University, announced at PEARC19 last year; and Neocortex at the Pittsburgh Supercomputing Center (PSC) and Voyager at the San Diego Supercomputer Center (SDSC), announced at PEARC20.

The Capacity Systems, meant for production computation but at a smaller scale than the Leadership systems, might spread NSF funding over more systems at more centers. The aim is to expand the opportunities and access for a broad range of supercomputing projects, enabled by the fact that new technology allows smaller systems to provide performance that previously might have been associated with larger machines. Examples include Bridges-2 at PSC and Expanse at SDSC, announced at PEARC19; and Anvil at Purdue University, Delta at the National Center for Supercomputing Applications, and Jetstream2 at Indiana University, and, announced this year.

“The notion we had was to spur innovation in two ways,” Friedlander said. “One of them was to do more, smaller systems. Given the power that is now possible, rather than building another, say, $50-million or $30-million machine, could we break these into a set of smaller systems and have them more widely distributed?” As a second prod to innovation, “we had the opportunity to have a wider range of architectures and therefore [more] ability to…innovate.”

It’s About Connections

Another top OAC funding priority is expanding and integrating these machines, other computational systems, and researchers by supporting networking and cybersecurity. OAC has enabled connectivity at virtually every scale, backing global networking via the NSF International Research Network Connections Program (IRNC); national network infrastructure in partnership with Internet2 and ESNet; and campus up to state and regional connectivity via Campus Cyberinfrastructure (CC*). Hand in hand with such cybercommunication is security, which OAC supports via the Cybersecurity Innovation for Cyberinfrastructure Innovation (CICI) program.

Friedlander called out CC* and CICI for particular focus. For the former, she cited the strong campus-level partnerships that enable learning institutions to upgrade their campus networks and external connectivity to the national research and engineering fabric. Speaking of the latter, CICI’s operational cybersecurity focus fills a gap in Secure and Trustworthy Cyberspace (SaTC), the NSF’s current, $75-million flagship security program, by funding Transition to Practice (TTP) within SaTC.

In addition, the 2020 fiscal year saw an innovation track with linkages to FABRIC and the Open Science Grid (OSG), and six additional funded projects, through Exploring Clouds for Acceleration of Science (E-CAS), which will leverage commercial cloud capabilities to perform scientific research while developing technologies needed.

It’s About Data and Software

Less well known, perhaps, among the OAC’s portfolio are the programs that fund work in data and software. Friedlander reminded the audience that the Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program now integrates the Data Infrastructure Building Blocks (DIBBs) and Software Infrastructure for Sustained Innovation solicitations to support scientific innovation and discovery through improved data and software CI, following and helping to disseminate best practices in data management and software development.

“If you will, it’s another experiment by integrating these two programs under a single umbrella,” to fund operations that are flexible and responsive to the needs of the research community, Friedlander said. She’s particularly proud of how nimbly individual CSSI projects pivoted to support COVID-19 research. “My advice to all of you is, ‘Watch this space.’”

Friedlander gave specific examples of data/software advances enabled by OAC funding. GeoCODES, the Geoscience Cyberinfrastructure for Open Discovery in the Earth Sciences, a project supported by the NSF Geosciences directorate and OAC,  links a number of pilot NSF data facilities with web-based metadata organizations; the computing ecosystem of NSF’s XSEDE CI program; commercial cloud services; and the most popular cloud computing tools, such as HTML5, Jupyter, R, and MATLAB. Harnessing the Data Revolution (HDR) connects foundations, systems, and CI; data intensive science and engineering; and education and workforce elements to support research in a variety of fields in the life, environmental, materials, and earth science domains. SAGE explores new techniques for applying machine learning algorithms to data from such intelligent sensors and then build reusable software that can run programs within the embedded computer and transmit the results over the network to central computer servers to support a resilient, multimessenger network to detect gradual changes in domains such as early tsunami prediction.

Mostly, Though, It’s About People

Another thrust of OAC that may not be widely known is its increasing focus on developing the sophisticated workforce necessary to maintain technical progress, Friedlander said. The office funds training at multiple levels, supporting cyberscientists, professional staff, and of course domain-expert scientists focused on their fields rather than HPC. Examples included the NSF-wide Faculty Early Career Development Program, the CISE Research Initiation Initiative, CyberTraining-based Workforce Development for Advanced Cyberinfrastructure, the CISE-wide OAC Core Research Program, and Computing Innovation Fellows.

“All of this is always about people,” she added. “It always comes back to people and we’ve known it.”

The OAC Core Research Program is a solicitation meant to foster multidisciplinary, translational research in all aspects of CI. Research areas include architecture and middleware for extreme-scale systems, scalable algorithms and applications, and an ecosystem of advanced CI. OAC’s Data-Intensive Discovery Pathways, Friedlander explained, provides the “missing middle” that links the wealth of new data sources to scientific exploration by connecting computing, data, networking, software, and above all people.

Building Infrastructure Is Slow…But the Science Is Amazing

Globally, Friedlander said, OAC is focusing on building CI that moves discovery forward securely, without becoming an impediment to exploration and open communication.

“There are matters where the policy is about the technology, and there are matters where the technology can help us operationalize solutions or point to solutions,” she said. “And then there are the third category of matters that affect how we build the technology but are far broader than the technology itself.” An example of the last being the very big question of ensuring the trustworthiness of science, which spans from best practice in data handling to larger issues of trust between scientists and the larger society, as well as gender and equity questions.

“I’ve made the case…that building infrastructure systems, despite the pace of technological change, is actually fairly slow,” she said. “That isn’t to say that we’re not calling for innovation or that all we want to do is incremental development. But it is also true, if you look back at the major developments, that they are cumulative.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire