3D Pens Can Make Ugly Drone Parts That Almost Work

Small hobby aircraft and light plastic parts go hand in hand, and a 3D printing pen makes lightweight plastic things without the overhead of CAD work and running a 3D printer. So could a 3D pen create useful plastic bits for small quadcopters? [Michael Niggel] decided to find out by building his drone parts with a 3D pen loaded with ABS plastic. He mostly discovered that the created objects could politely be said to look like they were sketched by a toddler, but that’s not all he learned.

He found that in general creating an object was harder than the marketing materials implied. As soon as the filament exits the pen’s nozzle, the thin little molten line of plastic cools rapidly and does two things: it has a tendency to curl, and loses its desire to stick to things. [Michael] found the whole affair worked much less like ‘drawing in thin air’ and rather more like piping frosting, or caulking.

An almost functional micro quad frame. The arms aren’t rigid enough to hold the motors vertical when under power.

Nevertheless, [Michael] sought to discover whether a 3D pen could be used to make quick and dirty parts of any use. He created two antenna brackets and one micro quad frame. All three are chaotic messes, but one antenna bracket was perfectly serviceable. The 3D pen was indeed able to create a strangely-shaped part that would have been a nightmare to CAD up. The other antenna part worked, but didn’t do anything a zip tie wouldn’t have done better. The rapid cooling of the plastic from the 3D pen has an advantage: extrusions don’t “droop” like a glob of hot glue does before it hardens.

By now, [Michael] agreed that the best way to create a plastic part of any complexity whatsoever seemed to be to draw sections flat, build them up in layers, then use the pen to weld the pieces together and add bulk. The micro quad frame he made in this way doesn’t look any nicer than the other attempts, but it did hold the parts correctly. Sadly, it would not fly. Once the motors powered up, the arms would twist and the flight controller was unable to compensate for motors that wouldn’t stay straight. This could probably be overcome, but while the end result was dirty it certainly wasn’t quick. The 3D pen’s niche seems restricted to simple, unstressed parts that aren’t permitted to gaze up themselves in a mirror.

If you have a 3D pen, we’d like to remind you of this mini spool design whose parts are welded together with the pen itself. For bigger jobs, a high-temperature hot glue gun can be used to dispense PLA instead.

Ask Hackaday: Drone Swarms Replace Fireworks; Where Are The Hackers?

Your mom always warned you that those fireworks could put an eye out. However, the hottest new thing in fireworks displays is not pyrotechnic at all. Instead, a swarm of coordinated drones take to the sky with different lighting effects. This makes some pretty amazing shows possible, granting full control of direction, color, and luminosity of each light source in a mid-air display. It also has the side benefit of being safer — could this be the beginning of the end for fireworks accident videos blazing their way across social media platforms?

For an idea of what’s possible with drone swarm displays, check out the amazing pictures found on this site (machine translation) that show off the 3D effects quite well. Note that although it appears the camera is moving during many of these, the swam itself could be rotated relative to a stationary viewer for a similar effect.

What I couldn’t find was much going on here in the hobby space. Granted, in the United States, restrictive drone laws might hamper your ability to do things like this. But it seems that in a purely technical terms this wouldn’t be super hard to do — at least for simple designs. Besides, there must be some way to do this in US airspace since drone performances have been at the Super Bowl, Los Angeles, New York, Miami, and Folsom, CA.

So if the regulations were sorted, what would it take to build a swarm of your own performing drones?

Continue reading “Ask Hackaday: Drone Swarms Replace Fireworks; Where Are The Hackers?”

Autonomous Boat For Awesome Video Hyperlapses

With the ever-increasing capabilities of smart phones, action cameras, and hand-held gimbals, the battle for the best shots is intensifying daily on platforms like YouTube and Instagram. Hyperlapse sequences are one of the popular weapons in the armoury, and [Daniel Riley] aka [rctestflight] realised that his autonomous boat could be an awesome hyperlapse platform.

This is the third version of his autonomous boat, with version 1 suffering from seaweed assaults and version 2 almost sleeping with the fishes. The new version is a flat bottomed craft was built almost completely from pink insulation foam, making it stable and unsinkable. It uses the same electronics and air boat propulsion as version 2, with addition of a GoPro mounted in smart phone gimbal to film the hyper lapses. It has a tendency to push the bow into the water at full throttle, due to the high mounted motors, but was corrected by adding a foam bulge beneath the bow, at the cost of some efficiency.

Getting the gimbal settings tuned to create hyperlapses without panning jumps turned out to be the most difficult part. On calm water the boat is stable enough to fool the IMU into believing that it’s is not turning, so the gimbal controller uses the motor encoders to keep position, which don’t allow it to absorb all the small heading corrections the boat is constantly making. Things improved after turning off the encoder integration, but it would still occasionally bump against the edges of the dead band inside which the gimbal does not turn with the boat. In the end [Daniel] settled for slowly panning the gimbal to the left, while plotting a path with carefully calculated left turns to keep the boat itself out of the shot. While not perfect, the sequences still beautifully captured the night time scenery of Lake Union, Seattle. Getting it to this level cost many hours of midnight testing, since [Daniel] was doing his best to avoid other boat traffic, and we believe it paid off.

We look forward to his next videos, including an update on his solar plane. Continue reading “Autonomous Boat For Awesome Video Hyperlapses”

Bamboo Skewers Launch Airship

We have to admit, we like airships. There’s something about the image of a stately zeppelin floating over Manhattan that just makes us imagine the future. There are not many airships anymore, but you can always build your own. [Crafty Robot] shows how to use one of their boards to make a simple and easy controlled balloon. Honestly, they don’t give you many details, but we know how to turn motors and servos. We loved their construction with hot glue and bamboo. Effective, and fun to say.

The bamboo skewers are easy to find and make a lightweight frame. Some drone motors provide thrust and some simple RC servos control the angle of the props. Nice and simple.

Continue reading “Bamboo Skewers Launch Airship”

Tiny Drones Navigate Like Real Bugs

When it comes to robotic navigation, the usual approach is to go as technically advanced and “smart” as possible. Yet the most successful lifeforms that we know of follow a completely different approach. With limited senses and cognitive abilities, the success of invertebrates like ants and honeybees lie in cooperation in large numbers. A joint team of researchers from TU Delft, University of Liverpool and Radboud University of Nijmegen, decided to try this approach and experimented with a simple navigation technique to allow a swarm of tiny flying robots to explore an unknown environment.

The drones used were of-the-shelf Crazyflie 2.0 micro quadcopters with add-on boards. Sensors consisted of it’s onboard IMU, simple range finding sensors on a Multi-ranger deck for obstacle detection, and a down pointing optical flow sensor, on a Flow deck, to keep track of the distance travelled.  To navigate, the drones used a “swarm gradient bug algorithm” (SGBA).  Each drone in has different preferred direction of travel from takeoff. When an obstacle encountered, it follows the contour of the obstacle, and then continues  in the preferred direction once the path is clear.  When the battery drops to 60%, it returns to a wireless homing beacon. While this technique might not be the most efficient, it has the major advantage of being “lightweight” enough to implement on a cheap microcontroller, an STM32F4 in this case. The full research article is available for free, and is a treasure trove of information.

The main application researchers have in mind is for search and rescue. A swarm of drones can explore an unstable or dangerous area, and identify key areas to focus rescue efforts on.  This can drastically reduce wasted time and risk to rescue workers. It is always cool to see complex problems being solved with simple solution, and we are keen to see where things go. Check out the video after the break. Continue reading “Tiny Drones Navigate Like Real Bugs”

Autonomous Air Boat Vs Lake Washington

Autonomous vehicles make a regular appearance around here, as does [Daniel Riley] aka [rctestflight]. His fascination with building long-endurance autonomous vehicles continues, and this time he built an autonomous air boat.

This craft incorporates a lot of the lessons learnt from his autonomous boat that used a plastic food container. One of the biggest issues was the submerged propellers kept getting tangled in weeds. This led [Daniel] to move his props above water, sacrificing some efficiency for reliability, and turning it into an air boat. The boat itself is catamaran design with separate 3D printed hulls connected by carbon fibre tubes. As with the tupperware boat, autonomous control is done by the open source Ardupilot software.

During testing [Daniel] had another run in with his old arch-nemesis, seaweed. It turns out the sharp vertical bow is a nice edge for weeds to hook on to, create drag, and screw up the craft’s control. [Daniel]’s workaround involved moving the big batteries to the rear, causing the bows lift almost completely out of the water.

With a long endurance in mind right from the start of the project, [Daniel] put it to the test with a 13 km mission on Lake Washington very early one morning. For most of the mission the boat was completely on its own, with [Daniel] stopping at various points along the lake shore to check on its progress. Everything went smoothly until 10 km into the mission when the telemetry showed it slowing down and angling off course, after which is started going in circles. Lucky for Daniel he was offered a kayak by a lakeside resident, and he managed to recover the half sunken vessel. He suspects the cause of the failure was a slowly leaking hull. [Daniel] is already working on the next version, and were looking forward to seeing what he comes up with. Check out the video after the break. Continue reading “Autonomous Air Boat Vs Lake Washington”

These Maple Pod Inspired Drones Silently Carry Payloads

Researchers from the Singapore University of Technology and Design (SUTD) recently released a video showing their nature-inspired drone that is capable of breaking out into five separate smaller drones. The drones each have auto-rotating wings that slow their rate of descent, similar to seed pods from a maple tree. Due to their design, the drones are only made to be used for a one-way trip, with the five components each carrying a separate payload. The drones are designed to detach within a specified distance from their destination, allow the collective body to safely spiral downwards towards land.

In their paper published on the same subject, the researchers discuss how they optimized the balsa wood wings with servos, a LiPo battery, and a receiver attached to a 3D-printed body. Four are equipped with just these components, while the fifth also holds a 3-axis magnetometer, a Teensy 3.5 board, a GPS module, and a Pixracer controller.

They experimented with several motion capture setups and free-flight drop tests to verify their simulations on the models for the drones. Apart from simply detaching, they are also designed to cater to different mission profiles based on the environment they are dropped in.

We’ll admit that the implementation and design of the drones does seem fairly dystopian, especially when you wonder what could possibly be the payloads these drones are designed to carry. But in terms of nature-inspired robotics, the maple seed pod idea is pretty interesting.

Continue reading “These Maple Pod Inspired Drones Silently Carry Payloads”