Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics

Abstract

Graphene-based nanoporous materials have been extensively explored as high-capacity ion electrosorption electrodes for supercapacitors. However, little attention has been paid to exploiting the interactions between electrons that reside in the graphene lattice and the ions adsorbed between the individual graphene sheets. Here we report that the electronic conductance of a multilayered reduced graphene oxide membrane, when used as a supercapacitor electrode, can be modulated by the ionic charging state of the membrane, which gives rise to a collective electrolyte gating effect. This gating effect provides an in-operando approach for probing the charging dynamics of supercapacitors electrically. Using this approach, we observed a pore-size-dependent ionic hysteresis or memory effect in reduced graphene oxide membranes when the interlayer distance is comparable to the ion diameter. Our results may stimulate the design of novel devices based on the ion–electron interactions under nanoconfinement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Real-time monitoring of the conductance of a rGO MGM during capacitive charging.
Fig. 2: Comparison of the conventional back gating of a monolayered rGO with the electrolyte gating of a multilayered rGO membrane.
Fig. 3: Nanoconfined electrolyte gating of rGO membranes with different interlayer distances under negative polarization.
Fig. 4: Characterization of the interlayer distance-dependent hysteretic response of GMGM during galvanostatic charging/discharging cycles.
Fig. 5: Characterization of the memcapacitive effect (time-dependent GMGM) during the open-circuit process.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070–16079 (2016).

    CAS  Google Scholar 

  2. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018–16033 (2016).

    CAS  Google Scholar 

  3. Foroughi, J. et al. Torsional carbon nanotube artificial muscles. Science 334, 494–497 (2011).

    CAS  Google Scholar 

  4. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    CAS  Google Scholar 

  5. Futamura, R. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).

    CAS  Google Scholar 

  6. Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    CAS  Google Scholar 

  7. Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216–16231 (2017).

    Google Scholar 

  8. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS  Google Scholar 

  9. Zhan, H. L. et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes. Adv. Mater. 32, 1904562 (2020).

    CAS  Google Scholar 

  10. Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    CAS  Google Scholar 

  11. Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).

    CAS  Google Scholar 

  12. Levi, M. D., Sigalov, S., Salitra, G., Aurbach, D. & Maier, J. The effect of specific adsorption of cations and their size on the charge-compensation mechanism in carbon micropores: the role of anion desorption. Chemphyschem 12, 854–862 (2011).

    CAS  Google Scholar 

  13. Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 24, 8722–8728 (2014).

    Google Scholar 

  14. Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    CAS  Google Scholar 

  15. Richey, F. W., Tran, C., Kalra, V. & Elabd, Y. A. Ionic liquid dynamics in nanoporous carbon nanofibers in supercapacitors measured with in operando infrared spectroelectrochemistry. J. Phys. Chem. C 118, 21846–21855 (2014).

    CAS  Google Scholar 

  16. Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215–16222 (2017).

    CAS  Google Scholar 

  17. Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4, 713–720 (2009).

    CAS  Google Scholar 

  18. Li, D., Mueller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    CAS  Google Scholar 

  19. Yang, X. et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. 50, 7325–7328 (2011).

    CAS  Google Scholar 

  20. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    CAS  Google Scholar 

  21. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970).

    Google Scholar 

  22. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    CAS  Google Scholar 

  23. Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).

    CAS  Google Scholar 

  24. Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).

    CAS  Google Scholar 

  25. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    CAS  Google Scholar 

  26. Zhan, H., Cervenka, J., Prawer, S. & Garrett, D. J. Molecular detection by liquid gated Hall effect measurements of graphene. Nanoscale 10, 930–935 (2018).

    CAS  Google Scholar 

  27. Kim, H., Kim, B. J., Sun, Q., Kang, M. S. & Cho, J. H. Graphene transistors gated by salted proton conductor. Adv. Electron. Mater. 2, 1600122 (2016).

    Google Scholar 

  28. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  29. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    CAS  Google Scholar 

  30. Albery, W. J., Elliott, C. M. & Mount, A. R. A transmission line model for modified electrodes and thin layer cells. J. Electroanal. Chem. Interfacial Electrochem. 288, 15–34 (1990).

    CAS  Google Scholar 

  31. Saab, A. P., Garzon, F. H. & Zawodzinski, T. A. Determination of ionic and electronic resistivities in carbon/polyelectrolyte fuel-cell composite electrodes. J. Electrochem. Soc. 149, A1541–A1546 (2002).

    CAS  Google Scholar 

  32. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).

    CAS  Google Scholar 

  33. Eda, G. & Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    CAS  Google Scholar 

  34. Memming, R. Semiconductor Electrochemistry (Wiley-VCH, 2015).

  35. Ji, H. X. et al. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317–3323 (2014).

    Google Scholar 

  36. Wang, S. et al. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2009).

    Google Scholar 

  37. Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Google Scholar 

  38. Murgia, S., Monduzzi, M., Lopez, F. & Palazzo, G. Mesoscopic structure in mixtures of water and 1-butyl-3-methyl imidazolium tetrafluoroborate: a multinuclear NMR study. J. Solut. Chem. 42, 1111–1122 (2013).

    CAS  Google Scholar 

  39. Jin, H. et al. Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J. Phys. Chem. B 112, 81–92 (2008).

    CAS  Google Scholar 

  40. He, Y. D., Huang, J. S., Sumpter, B. G., Kornyshev, A. A. & Qiao, R. Dynamic charge storage in ionic liquids-filled nanopores: insight from a computational cyclic voltammetry study. J. Phys. Chem. Lett. 6, 22–30 (2015).

    CAS  Google Scholar 

  41. Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 18, 5731–5744 (2016).

    Google Scholar 

  42. Cheng, C., Jiang, G. P., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    CAS  Google Scholar 

  43. Nishi, N., Hirano, Y., Motokawa, T. & Kakiuchi, T. Ultraslow relaxation of the structure at the ionic liquid vertical bar gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: asymmetry of the relaxation time to the potential-step direction. Phys. Chem. Chem. Phys. 15, 11615–11619 (2013).

    CAS  Google Scholar 

  44. Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys.-Condens. Mat. 23, 022201 (2011).

    CAS  Google Scholar 

  45. Kondrat, S. & Kornyshev, A. Charging dynamics and optimization of nanoporous supercapacitors. J. Phys. Chem. C 117, 12399–12406 (2013).

    CAS  Google Scholar 

  46. Zaccagnini, P. et al. Modeling of electrochemical capacitors under dynamical cycling. Electrochim. Acta 296, 709–718 (2019).

    CAS  Google Scholar 

  47. Conway, B. & Pell, W. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 105, 169–181 (2002).

    CAS  Google Scholar 

  48. Krems, M., Pershin, Y. V. & Di Ventra, M. Ionic memcapacitive effects in nanopores. Nano Lett. 10, 2674–2678 (2010).

    CAS  Google Scholar 

  49. Vaidyanathan, S. & Volos, C. Advances in Memristors, Memristive Devices and Systems. (Springer, 2017).

  50. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    CAS  Google Scholar 

  51. He, Q. et al. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011).

    CAS  Google Scholar 

  52. Thangadurai, V., Huggins, R. A. & Weppner, W. Use of simple AC technique to determine the ionic and electronic conductivities in pure and Fe-substituted SrSnO3 perovskites. J. Power Sources 108, 64–69 (2002).

    CAS  Google Scholar 

  53. Zhan, H. Graphene-Electrolyte Interfaces: Electronic Properties and Applications (Jenny Stanford: 2020).

Download references

Acknowledgements

We acknowledge financial support from the Australia Research Council (DP140102624, DP180102890 and FL180100029) and the University of Melbourne. This work made use of the facilities at the Monash Centre for Electron Microscopy (MCEM) and Melbourne Centre for Nanofabrication (MCN).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and J.X. formulated the concept of exploiting the electrolyte gating effect to probe the charging dynamics of supercapacitors with inputs from H.Z. and J.Z.L. J.X. designed and carried out most of the materials synthesis and electrochemical experiments under the guidance of D.L. and G.P.S. H.Z. carried out the analysis of the experiments with D.L. and J.Z.L. X.W. examined the effect of electrode thickness on the electrolyte gating. Z.-Q.X. carried out the back-gating experiments of single rGO sheets. Z.X. performed the in situ optical measurements of the thickness of the electrode under electrolyte gating. K.Z. characterized the interlayer distance of the MGMs. D.L., H.Z. and J.X. wrote the manuscript with contributions from all the other authors.

Corresponding author

Correspondence to Dan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and refs. 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhan, H., Wang, X. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0704-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing