iStock and Northwestern University
Inset photo of volunteer with multiple devices over a heartbeat

On-demand Transient Pacemaker Communicates Through Sensors

June 9, 2022
A proof-of-concept, temporary postoperative cardiac pacing device integrates with sensors and a control unit.

Northwestern University researchers have upped the ante with a smart pacemaker device that continuously monitors physiological functions such as oxygen levels, respiration, muscle tone, physical activity and the heart’s electrical activity.

An upgrade from a transient pacemaker developed in 2021, the implantable device is designed for patients who need temporary pacing after cardiac surgery or are waiting for a permanent pacemaker.

The latest iteration benefits from an automation feature that enables on-demand pacing. Sensors placed at specific points on the body communicate with each other and that data is fed to algorithms, which then analyze the combined activity in order to detect abnormal cardiac rhythms. The information is streamed to a smartphone or tablet so that physicians can remotely monitor their patients.

The integrated system consists of a transient, bioresorbable pacemaker; a cardiac module that sits on the chest; and a network of wearable sensors, including:

  • A hemodynamics module that is placed on the forehead to sense pulse oximetry, tissue oxygenation and vascular tone;
  • A respiratory module that sits at the base of the throat to monitor coughing and respiratory activity; and
  • A multi-haptic-feedback module that vibrates and pulses in a variety of patterns to communicate with the patient.

The research team explained in a press release that the chest-mounted cardiac module syncs with the pacemaker to record an electrocardiogram in real time to monitor heart activity. The pacemaker wirelessly harvests energy from the small wireless device that adheres to the patient’s chest without needing sutures. The transient pacemaker eventually dissolves, noted the researchers, but not before releasing an anti-inflammatory drug to prevent foreign-body reactions.

Northwestern University’s John A. Rogers stated in the press release that this work marked the first time the research team had paired soft, wearable electronics with transient electronic platforms. “This approach could change the way patients receive care providing multi-nodal, closed-loop control over essential physiological processes—through a wireless network of sensors and stimulators that operates in a manner inspired by the complex, biological feedback loops that control behaviors in living organisms,” Rogers said.

The study, “A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy,” was published in the journal Science. The research was led by Northwestern’s John A. RogersIgor R. Efimov and Dr. Rishi Arora.

Click here for footage of the devices off the body in the lab, being placed onto a volunteer and then removed. (Courtesy Northwestern University)

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!