Scoop has an Ethical Paywall
Work smarter with a Pro licence Learn More

Video | Business Headlines | Internet | Science | Scientific Ethics | Technology | Search

 

Progress in self-assembling nanomaterials

Collaboration between material scientists, biologists and chemists could advance the development of self-assembling nanomaterials, called nanoarchitectonics, argues a review in the journal Science and Technology of Advanced Materials. And while cyber technologies currently capture the public imagination, investment in this type of collaborative materials research is crucial in order to meet societal needs in energy storage, chemical sensing and a broad range of biological applications.

Nanoarchitectonics allows the arrangement of groups of atoms or molecules into a preordained structure. They can be used to create tiny electrical circuits, manipulate chemicals and create various building blocks for nanoscale technologies. Nanoarchitectonics materials that self-assemble into the desired arrangement are necessary to optimize and advance these technologies.

Katsuhiko Ariga and colleagues in Japan's National Institute for Materials Science examined recent progress in materials nanoarchitectonics. They believe that predicting the future of these materials requires an examination of biological systems, such as cell and protein surfaces, and macromolecular interfaces.

Self-assembled structures are common in biology, for example, in lipid layers or components of cytoskeletons; hence understanding how to control the evolution and behavior of biological structures could help with nanoarchitectonics. Although there is progress in developing some biological interface materials, creating highly sophisticated self-assembled systems is not yet possible. Collaborations between material scientists, biologists and chemists are needed to replicate the characteristics of highly evolved biological systems in nanomaterials.

"The development of functional materials by self-assembly nanoarchitectonics is analogous with the evolution of living creatures from component molecules," the reviewers write. "However, while living systems took billions of years to evolve, nanoarchitectonics could be used to accomplish many of its anticipated goals within the next few decades."

Advertisement - scroll to continue reading

Are you getting our free newsletter?

Subscribe to Scoop’s 'The Catch Up' our free weekly newsletter sent to your inbox every Monday with stories from across our network.

© Scoop Media

Advertisement - scroll to continue reading
 
 
 
Business Headlines | Sci-Tech Headlines

 
 
 
 
 
 
 
 
 
 
 
 
 

Join Our Free Newsletter

Subscribe to Scoop’s 'The Catch Up' our free weekly newsletter sent to your inbox every Monday with stories from across our network.