Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-limited frequency fluctuations in a terahertz laser

Abstract

Quantum cascade lasers1,2 can be considered the primary achievement of electronic band structure engineering, showing how artificial materials can be created through quantum design to have tailor-made properties that are otherwise non-existent in nature. Indeed, quantum cascade lasers can be used as powerful testing grounds of the fundamental physical parameters determined by their quantum nature, including the intrinsic linewidth of laser emission3, which in such lasers is significantly affected by the optical and thermal photon number generated in the laser cavity. Here, we report experimental evidence of linewidth values approaching the quantum limit4,5 in far-infrared quantum cascade lasers. Despite the broadening induced by thermal photons, the measured linewidth results narrower than that found in any other semiconductor laser to date. By performing noise measurements with unprecedented sensitivity levels, we highlight the key role of gain medium engineering6 and demonstrate that properly designed semiconductor-heterostructure lasers can unveil the mechanisms underlying the laser-intrinsic phase noise, revealing the link between device properties and the quantum-limited linewidth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gain media architecture of a BTC terahertz QCL.
Figure 2: Schematic of the experimental set-up.
Figure 3: Frequency noise power spectral density.

Similar content being viewed by others

References

  1. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  2. Kohler, R. et al. Terahertz semiconductor heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  3. Schawlow, A. L. & Townes C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    Article  ADS  Google Scholar 

  4. Yamanishi, M., Edamura, T., Fujita, K., Akikusa, N. & Kan, H. Theory of the intrinsic linewidth of quantum cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE J. Quantum Electron. 44, 12–29 (2008).

    Article  ADS  Google Scholar 

  5. Bartalini, S. et al. Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow–Townes limit. Phys. Rev. Lett. 104, 083904 (2010).

    Article  ADS  Google Scholar 

  6. Vitiello, M. S. et al. Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers. Appl. Phys. Lett. 86, 111115 (2005).

    Article  ADS  Google Scholar 

  7. Fathololoumi, S. et al. Terahertz quantum cascade lasers operating up to similar to 200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20, 3866–3876 (2012).

    Article  ADS  Google Scholar 

  8. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. High-power terahertz quantum-cascade lasers. Electron. Lett. 42, 89–90 (2006).

    Article  Google Scholar 

  9. Vitiello, M. S. & Tredicucci, A. Tunable emission in a THz quantum cascade lasers. IEEE Trans. Terahertz Sci. Tech. 1, 76–84 (2011).

    Article  ADS  Google Scholar 

  10. Reix, J.-M. et al. The Hershel/Planck programme, technical challenges for two science missions, successfully launched. Acta Astronom. 34, 130–148 (2009).

    Google Scholar 

  11. Mittleman, D. M. Sensing with Terahertz Radiation (Springer, 2003).

    Book  Google Scholar 

  12. Tonouchi, M. Cutting edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  13. Capasso, F. et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth and far-infrared emission. IEEE J. Quantum Electron. 38, 511–532 (2002).

    Article  ADS  Google Scholar 

  14. Barkan, A. et al. Linewidth and tuning characteristics of terahertz quantum cascade lasers. Opt. Lett. 29, 575–577 (2004).

    Article  ADS  Google Scholar 

  15. Betz, A. L. et al. Frequency and phase-lock control of a 3 THz quantum cascade laser. Opt. Lett. 30, 1837–1839 (2005).

    Article  ADS  Google Scholar 

  16. Maulini, R. et al. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum cascade-laser. Opt. Lett. 30, 2584–2586 (2005).

    Article  ADS  Google Scholar 

  17. Hubers, H. et al. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Opt. Express 13, 5890–5896 (2005).

    Article  ADS  Google Scholar 

  18. Baryshev, A. et al. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser. Appl. Phys. Lett. 89, 031115 (2006).

    Article  ADS  Google Scholar 

  19. Barbieri, S. et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser. Nature Photon. 4, 636–640 (2010).

    Article  ADS  Google Scholar 

  20. Bartalini, S. et al. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 19, 17996–18003 (2011).

    Article  ADS  Google Scholar 

  21. Wiseman, H. M. Light amplification without stimulated emission: beyond the standard quantum limit to the laser linewidth. Phys. Rev. A 60, 4083–4093 (1999).

    Article  ADS  Google Scholar 

  22. Jirauschek, C. Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers. Opt. Express 18, 25922–25927 (2010).

    Article  ADS  Google Scholar 

  23. Elliott, D. S., Roy, R. & Smith, S. J. Extracavity laser bandshape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982).

    Article  ADS  Google Scholar 

  24. Sirtori, C. et al. Resonant tunneling in quantum cascade lasers. IEEE J. Quantum Electron. 34, 1722–1729 (1998).

    Article  ADS  Google Scholar 

  25. Lee, S. C. & Wacker, A. Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002).

    Article  ADS  Google Scholar 

  26. Callebaut, H., Kumar, S., Williams, B. S., Hu, Q. & Reno, J. L. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 84, 645–647 (2004).

    Article  ADS  Google Scholar 

  27. Mahler, L. et al. High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Appl. Phys. Lett. 87, 181101 (2005).

    Article  ADS  Google Scholar 

  28. Bartalini, S. et al. Frequency-comb-referenced quantum-cascade laser at 4.4 µm. Opt. Lett. 32, 988–990 (2007).

    Article  ADS  Google Scholar 

  29. Hubers, H. W. et al. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 89, 061115 (2006).

    Article  ADS  Google Scholar 

  30. Gagliardi, G. et al. Sensitive detection of methane and nitrous oxide isotopomers using a continuous wave quantum cascade laser. Eur. Phys. J. D 19, 327–331 (2002).

    ADS  Google Scholar 

  31. Tombez, L. et al. Frequency noise of free-running 4.6 µm distributed feedback quantum cascade lasers near room temperature. Opt. Lett. 36, 3109–3111 (2011).

    Article  ADS  Google Scholar 

  32. Dunbar, L. A. et al. Small optical volume terahertz emitting microdisk quantum cascade lasers. Appl. Phys. Lett. 90, 141114 (2007).

    Article  ADS  Google Scholar 

  33. Walther, C., Scalari, G., Beck, M. & Faist, J. Purcell effect in the inductor–capacitor laser. Opt. Letts 36, 2623–2625 (2011).

    Article  ADS  Google Scholar 

  34. Henry, C. H. in Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (ed. Yamamoto, Y.) 5–76 (Wiley, 1991).

    Google Scholar 

  35. Vitiello, M. S. et al. Electron-lattice coupling in bound-to-continuum THz quantum cascade lasers. Appl. Phys. Lett. 88, 241109 (2006).

    Article  ADS  Google Scholar 

  36. Vitiello, M. S. et al. Subband electronic temperature and electron lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets. Appl. Phys. Lett. 89, 131114 (2006).

    Article  ADS  Google Scholar 

  37. Martl, M. et al. Gain and losses in THz quantum cascade laser with metal-metal waveguide. Opt. Express 19, 733–738 (2011).

    Article  ADS  Google Scholar 

  38. Walther, C., Scalari, G., Faist, J., Beere, H. E. & Ritchie, D. A. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett. 89, 231121 (2006).

    Article  ADS  Google Scholar 

  39. Vitiello, M. S. et al. Probing quantum efficiency by laser-induced hot-electron cooling. Appl. Phys. Lett. 94, 021115 (2009).

    Article  ADS  Google Scholar 

  40. Carr, L. D. & Ye, J. Focus on cold and ultracold molecules. New. J. Phys. 11, 055009 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Italian Ministry of Education, University, and Research (MIUR) through the programme ‘FIRB–Futuro in Ricerca 2010 RBFR10LULP Fundamental Research on Terahertz Photonic Devices’ and by the Ente Cassa di Risparmio di Firenze and Regione Toscana, through project CTOTUS, in the framework of POR–CReO FESR 2007–2013. The authors thank H.E. Beere and D.A. Ritchie for the growth of the QCL structure, J.H. Xu for technical support and J. Faist for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S.V. conceived and performed the experiment, analysed the data, carried out the modelling and wrote the paper. S.B. conceived and performed the experiment, analysed the data and contributed to manuscript preparation. L.C. performed the experiment and analysed the data. P.D. conceived the experiments and contributed to the analysis and manuscript preparation. All authors discussed the results and implications and contributed to the manuscript at various stages.

Corresponding author

Correspondence to Miriam S. Vitiello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitiello, M., Consolino, L., Bartalini, S. et al. Quantum-limited frequency fluctuations in a terahertz laser. Nature Photon 6, 525–528 (2012). https://doi.org/10.1038/nphoton.2012.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing