Skip to main content Accessibility help
×
  • Cited by 36
Publisher:
Cambridge University Press
Online publication date:
February 2013
Print publication year:
2012
Online ISBN:
9781139025614

Book description

This textbook introduces students to the basic physical principles to analyse fluid flow in micro- and nano-size devices. This is the first book that unifies the thermal sciences with electrostatics and electrokinetics and colloid science; electrochemistry; and molecular biology. Key concepts and principles are discussed, such as the essentials of viscous flows, introductory electrochemistry, heat and mass transfer phenomena, elements of molecular and cell biology and much more. State-of-the-art analytical and computational approaches to problems in all of these areas are presented, especially electrokinetic flows, and examples are given of the use of these approaches to design devices used for rapid molecular analysis, biochemical sensing, drug delivery, DNA analysis, the design of an artificial kidney and other transport phenomena. There are exercise problems and modern examples of applications, as well as a solutions manual available for qualified instructors.

Reviews

'This book is clearly written at an appropriate level for the target audience. Generous illustrations. Summing up: recommended. Upper-division undergraduates and graduate students.'

R. Darby Source: Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Bibliography
Abramowitz, M., & Stegun, I. A., eds. 1972 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Washington, DC: National Bureau of Standards.
Abramson, H. A. 1931 The influence of size, shape, and conductivity on cataphoretic mobility, and its biological significance. J. Phys. Chem. 35, 289–308.
Acheson, D. J. 1990 Elementary Fluid Mechanics. Oxford: Clarendon Press.
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261–304.
Adrian, R. J., & Yao, C. S. 1985 Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24, 44–52.
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. 1994 Molecular Biology of the Cell. New York: Garland.
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. 1998 Essential Cell Biology. New York: Garland.
Allen, M. P. 2004 Introduction to molecular dynamics simulation. In Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, vol. 23 (ed. Norbert, Attig, Kurt, Binder, Helmut, Grubmuller & Kurt, Kremer), pp. 1–28. Julich, Germany.
Allen, M. P., & Tildesley, D. 1994 Computer Simulation of Liquids. Oxford: Clarendon Press.
Allen, S., Davies, J., Dawkes, A. C., Davies, M. C., Edwards, J. C., Parker, M. C., Roberts, C. J., Sefton, J., Tendler, S. J. B., & Williams, P. M. 1996 In situ observation of streptavidinbiotin binding on an immunoassay well surface using an atomic force microscope. FEBS Lett. 390(2), 161–164.
Anderson, J. D. 1982 Modern Compressible Flow: With Historical Perspective. New York: McGraw-Hill.
Anderson, J. L., & Idol, W. K. 1985 Electroosmosis through pores with nonuniformly charged walls. Chem. Eng. Commun. 38, 93–106.
Anton, K., & Berger, C. 1998 Supercritical Fluid Chromatography with Packed Columns: Techniques and Applications. New York: Marcel Dekker.
Archer, D. G., & Wang, P. 1990 The dielectric constant of water and the Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411.
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235, 67–77.
Aris, R. 1959 On the dispersion of a solute by diffusion, convection and exchange between phases. Proc. R. Soc. A 252, 538–550.
Atkinson, B., Brocklebank, M. P., Card, C. C. H., & Smith, J. M. 1969 Low Reynolds number developing flows. AIChE J. 15, 548–553.
Axelrod, D., Burghardt, T. P., & Thompson, N. L. 1984 Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 13, 247–268.
Barcilon, V., Chen, D.-P., & Eisenberg, R. S. 1992 Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52, 1405–1425.
Barcilon, V., Chen, D. P., Eisenberg, R. S., & Jerome, J. W. 1997 Qualitative properties of steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648.
Barrat, J. L., & Bocquet, L. 1999 Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 4671–4674.
Bashir, R., & Wereley, S., eds. 2006 BioMEMS and Biomedical Nanotechnology: Volume IV Biomolecular Sensing, Processing and Analysis. New York: Springer.
Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.
Bavier, R., & Ayela, F. 2004 Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels. Measure. Sci. Technol. 15, 377–383.
Bayley, H., & Cremer, P. S. 2001 Stochastic sensors inspired by biology. Nature 413, 226–230.
Bazant, M. Z., Chu, Kevin T., & Bayly, B. J. 2005 Current-voltage relations for electrochemical thin films. SIAM J. Appl. Math. 65, 1463–1484.
Becker, O. M., & Karplus, M. 2006 A Guide to Biomolecular Simulations. Dordrecht, Netherlands: Springer.
Bellman, R. E. 1964 Perturbation Techniques in Mathematics, Physics, and Engineering. New York: Holt, Rinehart and Winston.
Bender, Carl M., & Orszag, Steven A. 1999 Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory.New York: Springer.
Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. 1987 The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271.
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. 1981 Interaction models for water in relation to protein hydration. Intermolecular Forces, vol. 3 (ed. B. Pullman, Reidel, Dordrecht. The Netherlands), pp. 331–342.
Berman, A. S. 1953 Laminar flow in channels with porous walls. J. Appl. Phys. 24, 1232–1235.
Bernoulli, D. 1738 Hydrodynamics. Strasbourg: Bernouli. English Translation Dover, New York.
Bhattacharjee, S., & Elimelech, M. 1997 Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate. J. Colloid Interface Sci. 193, 273–285.
Bhattacharjee, S., Elimelechi, M., & Borkovec, M. 1998 DLVO interaction between coloidal particles: Beyond Derjaguin's approximation. Croatica Chem. Acta 71, 883–903.
Bhattacharyya, S., & Conlisk, A. T. 2005 Electroosmotic flow in two-dimensional charged micro- and nanochannels. J. Fluid Mech. 540, 247–267.
Bhushan, B., ed. 2007 Springer Handbook of Nanotechnology, 2nd ed. New York: Springer.
Bianchi, F., Wagner, F., Hoffmann, P., & Girault, H. H. 1993 Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems. Science 261, 895–897.
Bird, G. A. 1994 Molecular Gas Dynamics. Oxford, UK: Clarendon Press.
Bird, R. B., Stewart, W. E., & Lightfoot, E. N. 2002 Transport Phenomena, 2nd ed. New York: John Wiley.
Blasius, H. 1908 Grenzschichten in flussigkeiten mit kleiner reibung. Z. Math. Phys. 56, 1–37.
Bockris, J. O'M., , & Reddy, A. K. N. 1998 Modern Electrochemistry, Volume 1 Ionics, 2nd ed. New York: Plenum Press.
Bohn, P. 2009 Nanoscale control and manipulation of molecular transportin chemical analysis. Ann. Rev. Anal. Chem. 2, 279–296.
Booth, F. 1950 The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc. R. Soc. London A 203, 514–533.
Braha, O., Gu, Li-Qun, Zhou, Li, Lu, Xiaofeng, Cheley, S., & Bayley, H. 2000a Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18, 1005–1007.
Brecht, A., & Gauglitz, G. 1997 Recent developments in optical transducers for chemical or biochemical applications. Sensors Actuators B Chem. 38, 1–7.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.
Breuer, K., ed. 2005 Microscale Diagnostic Techniques. Berlin: Springer.
Brown, G. M. 1960 Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit. AICheJ. 6, 179–183.
Bruus, H. 2008 Theoretical Microfluidics. New York: Oxford University Press.
Burgeen, D., & Nakache, F. R. 1964 Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091.
Butler, J. N. 1998 Ionic Equilibrium: Solubility and pH Calculations. New York: John Wiley.
Castellan, G. W. 1983 Physical Chemistry, 3rd ed. Menlo Park, CA: Benjamin Cummings.
Castiglione, P., Falcioni, M., Lesne, A., & Vulpiani, A. 2008 Chaos and Coarse Grainning in Statistical Mechanics. Cambridge, UK: Cambridge University Press.
Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. 2004 DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nanoletters 4, 1551–1556.
Chang, H.-C., & Yeo, L. Y. 2010 Electrokinetically-Driven Microfluidics and Nanofluidics. Cambridge: Cambridge University Press.
Chang, R. 2000 Physical Chemistry for the Chemical and Biological Sciences. Sausalito, CA: University Science Books.
Chapman, D. L. 1913 A contribution to the theory of electrocapillarity. Philos. mag. 25, 475–481.
Chen, D. P., Lear, J., & Eisenberg, R. 1997 Permeation through an open channel: Poisson–Nernst–Planck theory of a synthetic ion channel. Biophys. J. 72, 97–116.
Chen, L., & Conlisk, A. T. 2008 Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Biomed. Microdevices 10, 289–298.
Chen, L., & Conlisk, A. T. 2009 Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Biomedical Microdevices 11, 251–258.
Chen, L. & Conlisk, A. T. 2010 DNA translocation phenomena in nanopores, Biomedical Microdevices, 12, 235–245.
Chen, P., Gu, J., Brandin, E., Kim, Y.-R., Wang, Q., & Branton, D. 2004 Probing single DNA molecule transport using fabricated nanopores. Nano Letters 4, 2293–2298.
Chen, R.-Y. 1973 Flow in the entrance region at low Reynolds numbers. J. Fluids Eng. 95, 153–158.
Chu, K. T., & Bazant, M. Z. 2005 Electrochemical thin films at and above the limiting current. SIAM J. Appl. Math. 65, 1485–1505.
Churchill, R. V. 1969 Fourier series and boundary value problems McGraw-Hill, 2.
Ciofalo, M., Collins, M. W., & Hennessy, T. R. 1999 Nanoscale Fluid Dynamics in Physiological Process: A Review Study. Southampton, UK: WIT Press.
Condon, E. U., & Morse, P. M. 1929 Quantum Mechanics. New York: McGraw-Hill.
Conlisk, A. T., Guezennec, Y. G., & Elliott, G. S. 1989 Chaotic motion of an array of vortices above a flat wall. Phys. Fluids A 1, 704–717.
Conlisk, A. T., Datta, S., Fissell, W. H., & Roy, S. 2009 Biomolecular transport through hemofiltration membranes. Ann. Biomed. Eng. 37(4), 732–746.
Constant, F. W. 1958 Theoretical Physics. Reading, MA: Addison-Wesley.
Conway, B. E. 1981 Ionic Hydration in Chemistry and Biophysics. NewYork: Elsevier.
Crick, F. H. C., & Watson, J. D. 1953 Molecular structure of nucleic acids. Nature 171, 737–738.
Cui, S. T. 2004 Molecular dynamics study of single-stranded DNA in aqueous solution confined in a nanopore. Molecular Phys. 102, 139–146.
Currie, I. G. 2003 Fundamental Mechanics of Fluids, 3rd ed. New York: Marcel-Dekker.
Cussler, E. L. 1997 Diffusion: Mass Transfer in Fluid Systems, 2nd ed. Cambridge: Cambridge University Press.
Czarske, J., Buttner, L., Razik, T., & Muller, H. 2002 Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Measure Sci. Technol. 13, 1979–1989.
Datta, S. & Ghosal, S. 2008 Dispersion due to wall interactions in microfluidic separation systems. Phys. Fluids 20, 012103–1–012103–14.
Daune, M. 1993 Molecular Biophysics: Structures in Motion. Oxford: Oxford University Press.
Dawson, T. H. 1976 Theory and Practice of Solid Mechanics. New York: Plenum Press.
Day, M. A. 1990 The no-slip condition of fluid mechanics. Erkenntis 33, 285–296.
Deamer, D. W., & Akeson, M. 2000 Nanopores and nucleic acids: Prospects for ultrarapid sequencing. Tibtech 18, 147–151.
Debye, P., & Hückel, E. 1923 The interionic attraction theory of deviations from ideal behavior in solution. Z. Phys. 24, 185–206.
Dechadilok, P., & Deen, W. M. 2006 Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959.
Deen, W. M. 1987 Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425.
Deen, W. M., Lazzara, M. J., & Myers, B. D. 2001 Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, 579–596.
Denbigh, K. 1971 Principles of Chemical Equilibrium, 3rd ed. Cambridge: Cambridge University Press.
Derjaguin, B. V. 1934 Friction and adhesion IV: Theory of adhesion of small particles. Kolloid Z. 69, 155–164.
Derjaguin, B. V., & Landau, L. D. 1941 Theory of the stability of strongly charged lyophobic colloids and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. 14, 633–662.
Desai, T., & Bhatia, S., ed. 2006 BioMEMS and Biomedical Nanotechnology: Volume III Therapeutic Micro/Nano Technology. New York: Springer.
Devasenathipathy, S., & Santiago, J. G. 2005 Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (ed. Kenny, Breuer), pp. 113–154. Berlin: Springer.
Devasenathipathy, S., Santiago, J. G., & Takehara, K. 1998 Particle tracking techniques for electrokinetic microchannel flows. Exp. Fluids 25, 316–319.
D'Orazio, P. 2003 Biosensors in clinical chemistry. Clin. Chim. Acta 334, 41–69.
Drazin, P. G., & Riley, N. 2006 The Navier–Stokes Equations: A Classification of Flows and Exact Solutions. Cambridge: Cambridge University Press.
Dukhin, S. S., & Derjaguin, B. V. 1974 Electrokinetic phenomena. In Surface and Colloid Science vol. 7 (ed. E., Matijevic), pp. 1–351. John Wiley.
Eggins, B. R. 1996 Biosensors: An Introduction. New York: John Wiley.
Einstein, A. 1905a A new determination of molecular dimensions. PhD thesis, University of Zurich.
Einstein, A. 1905b On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560.
Einstein, A. 1956 Investigation on the Theory of the Brownian Movement, 4th ed. New York: Dover.
Elimelech, M. 1998 Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Burlington, MA: Butterworth-Heinemann.
Erickson, D., & Li, D. 2001 Streaming potential and streaming current methods for characterizing heterogeneous solid surfaces. J. Colloid Interface Sci. 237, 283–289.
Erickson, D., & Li, D. 2002 Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18, 1883–1892.
Erickson, D., Sinton, D., & Li, D. 2003 Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on a Chip 3, 141–149.
Ethier, C. R., & Simmons, C. A. 2007 Introductory Biomechanics: From Cells to Organisms. Cambridge: Cambridge University Press.
Evans, D. J., & Morriss, G. P. 1990 Statistical Mechanics of Nonequilibrium Liquids. London: Academic Press.
Ewald, P. P. 1921 The calculation of optical and electrostatic grid potential. Ann. Phys. (Leipzig) 64, 253–287.
Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., & Yang, P. 2005 DNA translocation in inorganic nanotubes. Nanoletters 5, 1633–1637.
Fausett, L. V. 2008 Applied Numerical Analysis Using Matlab, 2nd ed. Upper Saddle River, NJ: Prentice Hall.
Fawcett, W. R. 2004 Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details. Oxford: Oxford University Press.
Ferrari, M., ed. 2006 BioMEMS and Biomedical Nanotechnology. New York: Springer.
Ferrer, M. L., Duchowicz, R., Carrasco, B., de la Torre, Jose G., & Acuna, A. U. 2001 The conformation of serum albumin in solution: A combined phosphoresceence depolarization-hydrodynamic modeling study. Biophys. J. 80, 2422–2430.
Feynman, R. P. 1961 There's Plenty of Room at the Bottom. New York: Reinhold.
Fissell, W. H. 2006 Developments towards an artificial kidney. Expert Rev. Med. Devices 3, 155–165.
Fissell, W. H., & Humes, H. D. 2006 Tissue engineering renal replacement therapy. In Tissue Engineering and Artificial Organs, Section 5, chap. 60 (ed. J. D., Bronzino), 60, pp. 1–14. Boca Raton, FL: CRC Press.
Fissell, W. H., Manley, S., Dubnisheva, A., Glass, J., Magistrelli, J., Eldridge, A., Fleischman, A., Zydney, A., & Roy, S. 2007 Ficoll is not a rigid sphere. Am. J. Physiol. Renal Physiol. 293, F1209–F1213.
Franks, F. 1972 Water: A Comprehensive Treatise, 7 vols. New York: Plenum Press.
Freifelder, D. 1987 Molecular Biology, 2nd edn. Boston: Jones and Bartlett.
Frenkel, D., & Smit, B. 2002 Understanding Molecular Simulations from Algorithms to Applications, 2nd ed. San Diego, CA: Academic Press.
Freund, J. B. 2002 Electroosmosis in a nanometer scale channel studied by atomistic simulation. J. Chem. Phys. 116, 2194–2200.
Friedman, M. H. 2008 Principles and Models of Biological Transport, 2nd ed. New York: Springer.
Fung, Y. C. 1981 Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.
Fuoss, R. M., & Onsager, L. 1955 Conductance of strong electrolytes at finite dilutions. Proc. Nat. Acad. Sci. U.S.A. 41, 274–283.
Gad-el Hak, M. 2001 The MEMS Handbook. Boca Raton, FL: CRC Press.
de Gennes, P. G., 2002 On fluid/wall slippage. Langmuir 18, 3413–3414.
Gibbs, J. W. 1961 The Scientific Papers of J. W. Gibbs. New York: Dover.
Giddings, J. C., Yang, F. J., & Myers, M. N. 1976 Flow-field-flow fractionation: A versatile new separation method. Science 193, 1244–1245.
Gilat, A., & Subramaniam, V. 2008 Numerical Methods for Scientists and Engineers. New York: John Wiley.
Gillespie, D. T. 1970 A Quantum Mechanics Primer. Scranton, PA: International Textbook.
Gillespie, D. 1999 A singular perturbation analysis of the Poisson–Nernst–Planck system: Applications to ionic channels. PhD thesis, Rush Medical School, Chicago.
Gillespie, D., & Eisenberg, R. S. 2001 Modified Donnan potentials for ion transport through biologicalion channels. Phys. Rev. E. 63, 061902-1–06192-8.
Glazer, A. N., & Nikaido, H. 2007 Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd ed. Cambridge: Cambridge University Press.
Golden, J. P., Floyd-Smith, T. M., Mott, D. R., & Ligler, F. S. 2007 Target delivery in a microfluidic immunosensor. Biosensors Bioelectr. 22, 2763–2767.
Goldstein, S. 1965a Modern Developments in Fluid Dynamics Volume I. New York: Dover.
Goldstein, S. 1965b Modern Developments in Fluid Dynamics Volume II. New York: Dover.
Gong, M., Kim, B. Y., Flachsbart, B. R., Shannon, M. A., Bohn, P. W., & Sweedler, J. V. 2008 An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sensors J. 8, 601–607.
Gouy, G. 1910 About the electric charge on the surface of an electrolyte. J. Phys. A 9, 457–468.
Grahame, D. C. 1953 Diffuse double layer theory for electrolytes of unsymmetrical valence types. J. Chem. Phys. 21, 1054–1060.
Granicka, L. H., Kawiak, J., Snochowski, M., Wojcicki, J. M., Sabalinska, S., & Werynski, A. 2003 Polypropylene hollow fiber for cells isolation: Methods for evaluation of diffusive transport and quality of cells encapsulation. Artificial Cells Blood Substitutes Biotechnol. 31, 249–262.
Green, N. M. 1970 Spectrophotometric determination of avidin and biotin. Methods Enzymol. 18, 418–424.
Gribbin, J. 1997 Richard Feynman: A Life in Science. New York: Dutton.
Griffiths, S. K., & Nilson, R. H. 1999 Hydrodynamic dispersion of a neutral nonre-acting solute in electroosmotic flow. Anal. Chem. 71, 5522–5529.
Griffiths, S. K., & Nilson, R. H. 2006 Charged species transport, separation, and dispersion in nanoscale channels: Autogenous electric field-flow fractionation. Anal. Chem. 78, 8134–8141.
Guo, L. J. 2004 Recent progress in nanoimprint technology and its applications. J. Appl. Phys. D: 37, R123–R141.
Hairer, E., Lubich, C., & Wanner, G. 2006 Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd ed. Heidelberg, Germany: Springer.
Hardy, R. C., & Cottingham, R. L. 1949 Viscosity of deuterium oxide and water in the range 5°C to 1250 °C. J. Res. Na. Bur. Standards 42, 573–578.
Haynes, W. M., ed. 2011–2012 Handbook of Chemistry and Physics, 92nd ed. Cleveland, Ohio: CRC Press.
Helmholtz, H. L. F. 1897 Uber den einflu der elektrischengrenzschichten bei galvanischer spannung und der durch wasserstromung erzeugten potentialdiffernz. Ann. Physik. 7, 337–387.
Henry, D. C. 1931 The cataphoresis of suspended particles, Part I. The equation of cataphoresis. Proc. R. Soc. London A 133, 106–129.
Heyes, D. M. 1998 The Liquid State: Applications of Molecular Simulations. Chichester, UK: John Wiley.
Hille, B. 2001 Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA: Sinauer Associates.
Hill, T. L. 1963 Thermodynamics of Small Systems, Part I. New York: W.A. Benjamin.
Hill, T. L. 1964 Thermodynamics of Small Systems, Part II. New York: W.A. Benjamin.
Hinchcliffe, A. 2003 Molecular Modeling for Beginners. John Wiley.
Hollerbach, U., Chen, D. P., & Eisenberg, R. 2001 Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through gramicidin a. J. Sci. Comput. 16, 373–409.
Holmes, M. H. 1995 Introduction to Perturbation Methods, 2nd ed. New York: Springer.
Homola, J., Yee, S. S., & Gauglitz, G. 1999 Surface plasmon resonance sensors: Review. Sensors Actuators BC 54, 3–15.
Honig, C. D. F., & Ducker, W. A. 2007 No-slip hydrodynamic boundary condition for hydrophilic particles. Phys. Rev. Lett. 98, 053101.
Howison, S. 2005 Practical Applied Mathematics. Cambridge: Cambridge University Press.
Hughes, W. F., & Gaylord, E. W. 1964 Basic Equations of Engineering Science.New York: Schaum.
Humbert, N., Zocchi, A., & Ward, T. R. 2005 Electrophoretic behavior of streptavidin complexed to a biotinylated probe: A functional screening assay for biotin-binding proteins. Electrophoresis 26, 47–52.
Humes, H. D., Fissell, W. H., & Tiranathanagul, K. 2006 The future of hemodialysis membranes. Kidney Int. 69, 1115–1119.
Hunter, R. J. 1981 Zeta Potential in Colloid Science. London: Academic Press.
Hur, J. S., Shaqfeh, E. S. G., & Larson, R. G. 2000 Brownian dynamics simulations of single DNA molecules in shear flow. J. Rheol. 44, 713–742.
Icenhower, J. P., & Dove, P. M. 2000 Water behavior at silica surfaces. In Adsorption on Silica Surfaces (ed. Eugene, Papirer), pp. 277–295. New York: Marcel-Dekker.
Iler, R. K. 1979 The Chemistry of Silica. New York: John Wiley.
Incropera, F. P., & Dewitt, D. P. 1990 Fundamentals of Heat and Mass Transfer, 3rd ed. New York: John Wiley.
Ishido, T., & Mizutani, H. 1981 Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its application to geophysics. J. Geophys. Res. 86(83), 1763–1775.
Ishijima, A., & Yanagida, T. 2001 Single molecule nanoscience. Trends Biochem. Sci. 26, 438–444.
Israelachvili, J. 1992 Intermolecular and Surface Forces, 2nd ed. London: Academic Press.
James, R. O. 1981 Surface ionization and complexation at the colloidl/aqueous electrolyte interface. In Adsorption of Inorganics at Solid–Liquid Interfaces (ed. M. A., Anderson & A. J., Rubins), pp. 219–261, chap. 6. Ann Arbor, MI: Ann Arbor Science.
Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., & Sijiao, L. 2004 Nanotechnology and biosensors. Biotechnol. Adv. 22, 505–518.
Jorgensen, P. L. 1990 Structure and molecular mechanism of Na, k-pump. In Monova-lent Cations in Biological Systems (ed. Charles Alexander, Pasternak), pp. 117–154. Boca Raton, FL: CRC Press.
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. 1983 Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.
Judy, J., Maynes, D., & Webb, B. W. 2002 Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transfer 45, 3477–3489.
Karniadakis, G., Beskok, A., & Aluru, N. 2005 Microflows and Nanoflows. New York: Springer.
Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. 1996 Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773.
Kays, W. M., & Crawford, M. E. 1980 Convective Heat and Mass Transfer, 2nd ed. New York: Mcgraw-Hill.
Keilland, J. 1937 Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678.
Kemery, P. J., Steehler, J. K., & Bohn, P. W. 1998 Electric field mediated transport in nanometer diameter channels. Langmuir 14, 2884–2889.
Kestin, J. 1978 Thermal conductivity of water and steam. Mech. Eng. Mag. August, 47.
Kevorkian, J., & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics. New York: Springer.
Kevorkian, J., & Cole, Julian D. 1996 Multiple Scale and Singular Perturbation Methods. New York: Springer.
Kirby, B. J. 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge, UK: Cambridge University Press.
Kirby, B. J., & Hasselbrink, E. F. 2004a Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187–202.
Kirby, B. J., & Hasselbrink, E. F. 2004b Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203–213.
Kirby, B. J., & Hasselbrink, E. F. 2004c Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203–213.
Kjelstrup, S., & Bedeaux, D. 2008 Non-Equilibrium Thermodynamics of Heterogenous systems. New Jersey: World Scientific.
Knox, J. H., & McCormack, K. A. 1994 Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance. Chromatographia 38, 215–221.
Koltun, W. L. 1965 Precision space-filling atomic models. Biopolymers 3, 665–679.
Koplik, J., Banavar, J. R., & Willemson, J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781–794.
Kress-Rogers, E., ed. 1997 Handbook of Biosensors and Electronic Noses: Medicine, Food and the Environment. Boca Raton, FL: CRC Press.
Kuo, T.-C. Jr., Cannon, D. M. Jr., Shannon, M. A., Bohn, P. W. & Sweedler, J. V. 2003 Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sensors and Actuators A 102, 223–233.
Lamb, S. H. 1945 Hydrodynamics, 6th ed. New York: Dover.
Landau, L. D., & Levich, B. V. G. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. 17, 42–54.
Landers, J. P., ed. 1994 Handbook of Capillary Electrophoresis. Boca Raton, FL: CRC Press.
Langhaar, H. L. 1942 Steady flow in the transition length of a straight tube. J. Appl. Mech. 9, 55–58.
Latini, G., Grifoni, R. C., & Passerini, G. 2006 Transport Properties of Organic Liquids. Southhampton, UK: WIT Press.
Lauga, E., Brenner, M. P., & Stone, H. A. 2005 Microfluidics: The no-slip condition. In Handbook of Experimental Fluid Mechanics (ed. J., Foss & A., Yarin), pp. 1219–1240. New York: Springer.
Leach, A. R. 1996 Molecular Modeling: Principles and Applications. Essex, UK: Longman.
Leal, L. G. 2007 Advanced Transport Phenomena. New York: Cambridge University Press.
Leca-Bouvier, B., & Blum, L. J. 2005 Biosensors for protein detection: A review. Anal. Lett. 38, 1491–1517.
Lee, A. P., & Lee L., James, eds. 2006 BioMEMS and Biomedical Nanotechnology: Volume I Biological and Biomedical Nanotechnology. New York: Springer.
Lee, L. J. 2006 Nanoscale polymer fabrication for biomedical applications. In BioMEMS and Biomedical Nanotechnology: Volume I Biological and Biomedical Nanotechnology (ed. Abraham, P. Lee & L., James Lee), pp. 51–96. New York: Springer.
Lee, M. L., Yang, F. J., & Bartle, K. D. 1984 Open Tubular Column Gas Chromatography: Theory and Practice. New York: John Wiley.
Lee, P.-S., & Garimella, S. V. 2006 Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratio. Int. J. Heat Mass Transfer 49, 3060–3067.
Lehnert, T., Gijs, M., Netzer, R., & Bischoff, U. 2002 Realization of hollow SiO2 micronozzles for electrical measurements on living cells. Appl. Phys. Lett. 81, 5063–5065.
Lempert, W. R., Magee, K., Ronney, P., Gee, K. R., & Haugland, R. P. 1995 Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion. Exp. Fluids 18, 249–257.
Levich, V. G., & Krylov, V. S. 1969 Surface-tension driven phenomena. Ann. Rev. Fluid Mech. 1, 293–316.
Levin, Y., & Flores-Mena, J. E. 2001 Surface tension of strong electrolytes. Europhys. Lett. 56, 187–192.
Li, D. 2004 Electrokinetics in Microfluidics. Amsterdam: Elsevier.
Li, J., Gershow, M., Stein, D., Brandin, E., & Golovchenko, J. A. 2003 DNA molecules and configurations in a solidstate nanopore microscope. Nat. Mater. 2, 611–615.
Li, Z., & Liu, B. C.-Y. 2001 A molecular model for representing surface tension for polar liquids. Chem. Eng. Sci. 56, 6977–6987.
Liou, W. K., & Fang, Y. 2006 Microfluid Mechanics: Principles and Modeling. New York: McGraw-Hill.
Luginbuhl, P., Indermuhle, P.-F., Gretillat, M.-A., Willemin, F., de Rooij, N. F., Gerber, D., Gervasio, G., Vuilleumier, J. -L., Twerenbold, D., Dugelin, M., Mathys, D., & Guggenheim, R. 2000 Femtoliter injector for DNA mass spectrometry. Sensors Actuators B 63, 167–177.
Malsch, N. H., ed. 2005 Biomedical Nanotechnology. Boca Raton, FL: Taylor and Francis.
March, H. W., & Weaver, W. 1928 The diffusion problem for a solid in contact with a stirred liquid. Phys. Rev. 31, 1072–1082.
Mark, P., & Nilsson, L. 2001 Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960.
Martin, F., Walczak, R., Boiarski, A., Cohen, M., West, T., Cosentino, C., & Ferrari, M. 2005 Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J. Controlled Release 102, 123–133.
Martini, F. 2001 Fundamentals of Anatomy and Physiology, 5th ed. Prentice Hall.
Masliyah, J. H., & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. Hoboken, NJ: John Wiley.
Maxwell, J. C. 1847 On Faraday's lines of force. Trans. Cambridge Philos. Soc. 10, 27–83.
McCammon, J. A., & Harvey, S. C. 1987 Dynamics of Proteins ansd Nucleic Acids. Cambridge: Cambridge University Press.
McNaught, A. D., & Wilkinson, A. 1997 Compendium of Chemical Terminology (Gold Book), Malden: Blackwell.
Meagher, R. J., Light, Y. K., & Singh, A. K. 2008 Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab-on-a-Chip 8, 527–532.
Meller, A., Nivon, L., & Branton, D. 2001 Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438.
Moran, M. J., & Shapiro, H. N. 2007 Fundamentals of Engineering Thermodynamics, 6th ed. New York: John Wiley.
Moran, M. J., Shapiro, H. N., Munson, B. R., & Dewitt, D. P. 2003 Introduction to Thermal Systems Engineering. New York: John Wiley.
Mott, D. R., Howell, P. B., Golden, J. P., Kaplan, C. R., Ligler, F. S., & Oran, E. S. 2006 Toolbox for the design of optimized microfluidic components. Lab-on-a-Chip 6, 540–549.
Mott, D. R., Howell, P. B., Obenschain, K. S., & Oran, E. S. 2009 The numerical tool-box: An approach for modeling and optimizing microfluidic components. Mech. Res. Commun. 36, 104–109.
Munson, B. R., Young, D. F., & Okiishi, T. H. 2005 Fundamentals of Fluid Mechanics, 2006th ed. New York: John Wiley.
Murray, J. D. 2001 Mathematical Biology I: An Introduction, 3rd ed. New York: Springer.
Murray, J. D. 2003 Mathematical Biology II: Spatial Models and Biological Applications, 3rd ed. New York: Springer.
Murrell, J. N., & Jenkins, A. D. 1982 Properties of Liquids and Solutions, 2nd ed. Chichester, UK: John Wiley.
Nayfeh, A. H. 1973 Perturbation Methods. New York: John Wiley.
Newman, J. S. 1972 Electrochemical Systems. Englewood Cliffs, NJ: Prentice Hall.
Nguyen, N. T., & Wereley, S. T. 2002 Fundamentals and Applications of Microfluidics. Norwood, MA: Artech House.
Oberkampf, W. L., & Blottner, F. G. 1998 Issues in computational fluid dynamics code verification and validation. AIAA J. 36, 687–695.
Oberkampf, W. L., Sindir, M. M., & Conlisk, A. T. 1998 G-077-1998 guide for the verification and validation of computational fluid dynamics simulations. Tech. Rep. American Institute of Aeronautics and Astronautics.
O'Brien, R. W., & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 1607–1626.
Ohshima, H., Healy, T. W., White, L. R., & O'Brien, R. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. II 80, 1299–1317.
Onsager, L., & Samaras, N. N. T. 1934 The surface tension of debye-huckel electrolytes. J. Chem. Phys. 2, 528–536.
Oseen, C. W. 1910 Uber die sstokes'sche formel und uber eine verwandte aufgabein der hydrodynamik. Ark. Math. Astron. Fys. 6.
Overbeek, J. TH. G. 1943 Theory of the relaxation effect in electrophoresis. Kolloide Beihefte 54, 287–364.
Oyanader, M., & Arce, P. 2005 A new and simpler approach for the solution of the electrostatic potential differential equation: Enhanced solution for planar, cylindrical and annular geometries. J. Colloid Interface Sci. 284, 315–322.
Ozkan, M., & Heller, M. J., ed. 2006 BioMEMS and Biomedical Nanotechnology: Volume II Micro/Nano Technology for Genomics and Proteomics. New York: Springer.
Papirer, E., ed. 2000 Adsorption on Silica Surfaces. New York: Marcel Dekker.
Persello, J. 2000 Surface and interface structure of silica. In Adsorption on Silica Surfaces (ed. Eugene, Papirer), pp. 297–342. New York: Marcel-Dekker.
Peters, T. 1996 All About Albumin: Biochemistry, Genetics and Medical Applications, 3rd ed. San Diego, CA: Academic Press.
Pinkus, O., & Sternlicht, B. 1961 Theory of Hydrodynamic Lubrication. New York: McGraw-Hill.
Plawski, J. L. 2001 Transport Phenomena Fundamentals. New York: Marcel-Dekker.
Priestley, J. 1767 The History and Present State of Electricity. London: Printed for J. Dodsley, J. Johnson and T. Cadell.
Priezjev, N. V., & Troian, S. M. 2006 Influence of periodic wall roughness on slip behavior at liquid/solid interfaces: Molecular scale simulations versus continuum predictions. J. Fluid Mech. 554, 25–48.
Priezjev, N. V., Darhuber, A. A., & Troian, S. M. 2005 Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 41608.
Probstein, R. F. 1989 Physicochemical Hydrodynamics. Boston: Butterworths.
Proudman, L., & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237–262.
Qiao, R., & Aluru, N. R. 2003a Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube. Nano Lett. 3, 1013–1017.
Qiao, R., & Aluru, N. R. 2003b Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J. Chem. Phys. 118, 4692–4701.
Quinke, G. 1859 Ueber eine neue Art elekrischer Ströme. Prog. Ann. 107, 1–47.
Rahman, A., & Stillinger, F. H. 1971 Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359.
Rapaport, D. C. 2004 The Art of Molecular Simulation, 2nd ed. Cambridge: Cambridge University Press.
Ravindra, N. M., Prodan, C., Fnu, S., Padroni, I., & Sikha, S. K. 2007 Advances in the manufacturing, types and applications of biosensors. JOM 59, 37–43.
Raymond, K. W. 2007 General, Organic and Biological Chemistry: An Integrated Approach, 2nd ed. New York: John Wiley.
Reid, R. C., Prausnitz, J. M., & Poling, B. E. 1987 The Properties of Gases and Liquids, 4th ed. New York: McGraw-Hill.
Revil, A., Pezard, P. A., & Glover, P. W. J. 1999 Streaming potential in porous media 1. Theory of the zeta potential. J. Geophys. Res. 104, 20021–20032.
Rhee, H.-K., Aris, R., & Amundson, N. R. 1986 First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations. Englewood Cliffs, NJ: Prentice Hall.
Rhee, H.-K., Aris, R., & Amundson, N. R. 1989 First-Order Partial Differential Equations: Volume 2 Theory and Applications of Hyperbolic Systems of Quasilinear Equations. Mineola, NY: Dover.
Rice, S. A. 2000 Active control of molecular dynamics: Coherence versus chaos. J. Stat. Phys. 101, 187–212.
Richardson, S. 1973 On the no-slip boundary condition. J. Fluid Mech. 59, 707–719.
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering. Socorro, NM: Hermosa.
Roache, P. J., & Steinberg, S. 1994 Symbolic manipulation and computational fluid dynamics. AIAA J. 22, 1390–1394.
Robinson, R. A., & Stokes, R. H. 1959 Electrolyte Solutions. New York: Academic Press.
Roco, M. 2005 Converging technologies: Nanotechnology and medicine. In Biomedical Nanotechnology (ed. Neelina H., Malsch). Boca Raton, FL: Taylor and Francis.
Rosi, N. L., & Mirkin, C. A. 2005 Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.
Roy, C. J., Nelson, C. C., Smith, T. M., & Ober, C. C. 2004 Verification of Euler/Navier–Stokes codes using the method of manufactured solutions. Int. J. Numer. Methods Fluids 44, 599–620.
Russel, W. B., Saville, D. A., & Schowalter, W. R. 1991 Colloidal Dispersions. Cambridge: Cambridge University Press.
Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. 1977 Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.
Sadr, R., Yoda, M., Zheng, Z., & Conlisk, A. T. 2004 An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357–367.
Sadr, R., Yoda, M., Gnanaprakasam, P., & Conlisk, A. T. 2006 Velocity measurements inside the diffuse electric double layer in electroosmotic flow. Appl. Phys. Lett. 89, 044103-1–044103-3.
Sadr, R., Hohenegger, C., Li, H., Mucha, P. J., & Yoda, M. 2007 Diffusion-induced bias in near-wall velocimetry. J. Fluid Mech. 577, 443–456.
Sadus, R. J. 1997 Molecular Simulation of Liquids: Theory, Algorithms and Object-Orientation. Amsterdam: Elsevier.
Sagui, C., & Darden, T. A. 1999 Molecular dynamics simulations of biomolecules: Long range electrostatic effects. Annu. Rev. Biomolecular Structure, 28, 155–179.
Saleh, O. A., & Sohn, L. L. 2006 An On-Chip Artificial Pore for Molecular Sensing. New York: Springer.
Saltzman, W. M. 2001 Drug Delivery: Engineering Principles for Drug Therapy. Oxford: Oxford University Press.
Saltzman, W. M. 2009 Biomedical Engineering. Cambridge, UK: Cambridge University Press.
Scheller, F. W., Wollenberger, U., Warsinke, A., & Lisdat, F. 2001 Research and development in biosensors. Curr. Opi. Biotechnol. 12, 35–40.
Scherrer, R., & Gerhardt, P. 1971 Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107, 718–735.
Schnell, E. 1956 Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152.
Sears, F. W., & Zemansky, M. W. 1964 University Physics, 3rd ed. Reading, MA: Addison-Wesley.
Shapiro, A. P., & Probstein, R. F. 1993 Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 27, 283–291.
Shaw, D. 1969 Electrophoresis. London: Academic Press.
Shereshefsky, J. L. 1967 A theory of surface tension of binary solutions I. Binary liquid mixtures of organic compounds. J. Colloid Interface Sci. 24, 317–322.
Sinha, M. K., Roy, D., Gaze, D. C., Collinson, P. O., & Kaski, J.-C. 2004 Role of ischemia modified albumin, a new biochemical marker of myocardial ischemia, in the early diagnosis of acute coronary syndromes. Emerg. Med. J. 21, 29.
Smith, G. D. 1985 Numerical Solutions of Partial Differential Equations, 3rd ed. Oxford: Oxford University Press.
Smoluchowski, M. 1918 Versuch einer mathematischen theorie der koagulation kinetic kolloider losungen. Z. Phys. Chem 92, 129–135.
Snyder, L. R., & Kirkland, J. J. 1979 Introduction to Modern Liquid Chromatography. New York: John Wiley.
Spichiger-Keller, U. E. 1998 Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley-VCH.
Spoel, D., van der van Maaren, P. J., & Berendsen, H. J. C. 1998 A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. J. Chem. Phys. 108, 10220–10230.
Stachel, J., ed. 1998 Einstein's Miraculous Year. Princeton, NJ: Princeton University Press.
Staubli, T., Stæckli, T., Knapp, H. F., Alpnach, S., Lausanne, S., de Neuchtel, U., & Neuchtel, S. 2005 Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay. Electrophoresis 26, 3697–3705.
Stern, O. 1924 The theory of the electrolytic double layer. Z. Elektrochem. 30, 508–516.
Stigter, D. 1980 Sedimentation of highly charged colloidal spheres. J. Phys. Chem. 84, 2758–2762.
Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. 2003 Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540.
Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. 2005 Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E. 71, 051903.
Störmer, C. 1907 Sur les trajectoires des corpuscules electrises. Arch. Sci. Phys. Nat. Geneve 24, 5–18, 113–158, 221–247.
Stroock, A. D., Weck, D. M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F., & Whitesides, G. M. 2000 Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 84, 3314–3317.
Styer, D. F. 1996 Common misconceptions regarding quantum mechanics. Am. J. Phys. 64, 31–34.
Tabeling, P. 2005 Introduction to Microfluidics. Oxford: Oxford University Press.
Tahery, R., Modarress, H., & Satherly, J. 2005 Surface tension prediction and thermodynamic analysis of the surface for binary solutions. Chem. Eng. Sci. 60, 4935–4952.
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London A 219, 186–203.
Taylor, G. I. 1954 Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. London A 225, 473–477.
Taylor, R., & Krishna, R. 1993 Multicomponent Mass Transfer. New York: John Wiley.
Terrill, R. M. 1964 Laminar flow in a uniformly porous channel. Aeronaut. Q. XV, 297–299.
Terrill, R. M., & Shrestha, G. M. 1965 Laminar flow through parallel and uniformly porous walls of different permeability. Z. Angewan. Math. Phys. 16, 470–482.
Terrill, R. M., & Thomas, P. W. 1969 On laminar flow through a uniformly porous pipe. Appl. Sci. Res. 21, 37–67.
Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. 2001 Electrochemical biosensors: Recommended definitions and classification. Biosensors Bioelectronics 16, 121–131.
Thompson, P. A., & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362.
Thust, M., Schoning, M. J., Frohnhoff, S., & Arens-Fischer, R. 1996 Porous silicon as a substrate material for potentiometric biosensors. Measure. Sci. Technol. 7, 26–29.
Tokaty, G. A. 1971 A History and Philosophy of Fluid Mechanics. New York: Dover.
Travis, K. P., & Gubbins, K. E. 2000 Poiseuille flow of Lennard–Jones fluids in narrow slit pores. J. Chem. Phys. 112, 1984–1994.
Tuckerman, M. 2010 Statistical Mechanics: Theory and Simulation. Oxford: Oxford University Press.
Turns, S. R., Thermal-Fluid Sciences: An Integrated Approach, Cambridge, UK: Cambridge University Press, 2006.
Tyrrell, H. J. V., & Harris, K. R. 1984 Diffusion in Liquids: A Theoretical and Experimental Study. London: Butterworth.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics, 2nd ed. Stanford, CA: Parabolic Press.
Venema, P., Hiemstra, T., & van R., , Willem, H. 1996 Comparison of different site binding models for cation sorption: Description of pH dependency, salt dependency, and cation-proton exchange. J. Colloid Interface Sci. 181, 45–49.
Venturoli, D., & Rippe, B. 2005 Ficoll and dextran vs. globular proteins as probes for testing glomular permselectivity: Effects of molecular size, shape, charge and deformability. A. J. Physiol. Renal Physiol. 288, 605–613.
Verlet, L. 1967 Computer experiments on classical fluids I. thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103.
Verwey, E. J. W., & Overbeek, J. T. G. 1948 Theory of Stability of Lyophobic Colloids. Amsterdam: Elsevier.
Vo-Dinh, T. 2006 Biosensors and biochips. In Biomolecular Sensing, Processing and Analysis (ed. R., Bashir, Steve, Wereley, & Mauro, Ferrari), pp. 4–33. New York: Springer.
Volkov, A. G., Paula, S., & Deamer, D. W. 1997 Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenergetics 42, 153–160.
Wang, S., Hu, Xin, & Lee, L. J. 2008 Electrokinetics induced asymmetric transport in polymeric nanonozzles. Lab-on-a-Chip 8, 573–581.
Wang, S., Zeng, C., Lai, S., Juang, Y.-J., Yang, Y., & Lee, L. J. 2005 Polymer nanonozzle array fabricated by sacrificial template imprinting. Adv. Mater. 17, 1182–1186.
Wang, Y., Bhushan, B., & Maali, A. 2009 Atomic force microscopy measurement of boundary slip on hydrophilic, hydrophobic and superhydrophobic surfaces. J. Vac. Sci. Technol. A 27, 1–7.
Wehausen, J. V., & Laitone, E. V. 1960 Surface waves. In Handbuch der Physik (ed. E., Flugge), vol. IX, pp. 446–758. Berlin: Springer.
Wereley, S. T., & Meinhart, C. D. 2010 Recent advances in micro-particle image velocimetry. In Ann. Rev. Fluid Mechanics, vol. 42, pp. 557–576. Palo Alto: Annual Reviews.
White, F. M. 2003 Fluid Mechanics, 5th ed. New York: McGraw-Hill.
White, F. M. 2006 Viscous Fluid Flow, 3rd ed. New York: McGraw-Hill.
White, F. M., Barfield, B. F., & Goglia, M. J. 1958 Laminar flow in a uniformly porous channel. J. Appl. Mech. 25, 613–617.
Wiersma, P. H., Loeb, A. L., & Overbeek, J. T. G. 1966 Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22, 78–99.
Wilson, A. H. 1948 A diffusion problem in which the amount of diffusing substance is finite. Philos. Maga. 54, 48–58.
Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Eng. Math. 16, 209–221.
Xuan, Xiangchun, X., Bo, S., David, , & Li D., 2004 Electroosmotic flow with Joule heating effects. Lab-on-a-Chip 4, 230–236.
Yoda, M. 2006 Nano-particle image velocimetry. In Biomolecular Sensing, Processing and Analysis (ed. Rashid, bashir & Steve, Wereley), pp. 331–348. New York: Springer.
Zaltzman, B., & Rubinstein, I. 2007 Electroosmotic slip and electroconvective instability. J. Fluid Mech. 579, 173–226.
Zeman, L. J., & Zydney, A. L. 1996 Microfiltration and Ultrafiltration: Principles and Applications. New York: Marcel-Dekker.
Zhao, H., & Bau, H. H. 2007 On the effect of induced electroosmosis on a cylindrical particle next to a wall. Langmuir 23, 4053–4063.
Zhu, W., Singer, S. J., Zheng, Z., & Conlisk, A. T. 2005 Electro-osmotic flow of a model electrolyte. Phys. Rev. E 71, 041501.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.