Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis

Abstract

Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in ‘overuse’ injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.

Key points

  • Mechanical loading is a biological stressor that elicits a homeostatic response to ensure the health and survival of the cells and/or tissues it is applied to.

  • Tissues that encounter high amounts of mechanical stress are prone to damage, especially the tendon and ligament entheses.

  • The immune system is crucial in responding to and orchestrating the repair of damaged tendons and ligaments.

  • Mechanical loading is a well-defined factor in the immunopathology of tendon and ligament disorders such as tendinopathy.

  • Mechanical loading is associated with the onset of chronic inflammatory arthritis, including spondyloarthritis (SpA) and rheumatoid arthritis (RA).

  • Microdamage associated with mechanical loading potentially focuses systemic autoimmune disease on the joint in the initiating phases of SpA and RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anatomy of tendons and ligaments in the peripheral and axial skeletons.
Fig. 2: Mechanical forces exerted on tendons and ligaments.
Fig. 3: Proposed tenocyte response mechanisms to mechanical stress.
Fig. 4: The tendon and ligament tissue repair process.
Fig. 5: Proposed model of the relationship between mechanical stress and inflammatory arthritis.

Similar content being viewed by others

Neal L. Millar, Karin G. Silbernagel, … Scott A. Rodeo

References

  1. Thomopoulos, S., Genin, G. M. & Galatz, L. M. The development and morphogenesis of the tendon-to-bone insertion: what development can teach us about healing. J. Musculoskelet. Neuronal Interact. 10, 35–45 (2010).

    CAS  PubMed  Google Scholar 

  2. Genin, G. M. et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97, 976–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu, H. H. & Thomopoulos, S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Apostolakos, J. et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J. 4, 333–342 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. US Department of Labor. 2018 survey of occupational injuries and illness: charts package. US Bureau of Labor Statistics https://www.bls.gov/iif/soii-charts-2018.pdf (2019).

  6. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  7. National Institutes of Health. Low back pain fact sheet. National Institute of Neurological Disorders and Stroke https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet (2019).

  8. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  9. Taurog, J. D., Chhabra, A. & Colbert, R. A. Ankylosing spondylitis and axial spondyloarthritis. N. Engl. J. Med. 374, 2563–2574 (2016).

    Article  PubMed  Google Scholar 

  10. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    Article  PubMed  Google Scholar 

  11. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 68, 770–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rudwaleit, M. et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Millar, N. L., Murrell, G. A. C. & McInnes, I. B. Inflammatory mechanisms in tendinopathy – towards translation. Nat. Rev. Rheumatol. 13, 110–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Mosca, M. J. et al. Trends in the theory that inflammation plays a causal role in tendinopathy: a systematic review and quantitative analysis of published reviews. BMJ Open. Sport. Exerc. Med. 4, e000332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Snedeker, J. G. & Foolen, J. Tendon injury and repair – a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater. 63, 18–36 (2017).

    Article  PubMed  Google Scholar 

  17. Duthon, V. B. et al. Anatomy of the anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 14, 204–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kannus, P. Structure of the tendon connective tissue. J. Med. Sci. Sport. 10, 312–320 (2000).

    Article  CAS  Google Scholar 

  19. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Screen, H. R. C., Berk, D. E., Kadler, K. E., Ramirez, F. & Young, M. F. Tendon functional extracellular matrix. J. Orthop. Res. 33, 793–799 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yoon, J. H. & Halper, J. Tendon proteoglycans: biochemistry and function. J. Musculoskelet. Neuronal Interact. 5, 22–34 (2005).

    CAS  PubMed  Google Scholar 

  22. Benjamin, M. & Ralphs, J. R. Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J. Anat. 193, 481–494 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akbar, M. et al. Targeting danger molecules in tendinopathy: the HMGB1/TLR4 axis. RMD Open 3, e000456 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nakamichi, R. et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat. Commun. 7, 12503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torre, O. M., Mroz, V., Bartelstein, M. K., Huang, A. H. & Iatridis, J. C. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann. N. Y. Acad. Sci. 1442, 61–78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shukunami, C. et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci. Rep. 8, 3155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schweitzer, R. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128, 3855–3866 (2001).

    CAS  PubMed  Google Scholar 

  28. Ito, Y. et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl Acad. Sci. USA 107, 10538–10542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levay, A. K. et al. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ. Res. 103, 948–956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muir, T., Sadler-Riggleman, I. & Skinner, M. K. Role of the basic helix-loop-helix transcription factor, scleraxis, in the regulation of sertoli cell function and differentiation. Mol. Endocrinol. 19, 2164–2174 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lavagnino, M. et al. Tendon mechanobiology: current knowledge and future research opportunities. J. Orthop. Res. 33, 813–822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakabe, T. et al. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J. Biol. Chem. 293, 5766–5780 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walia, B. & Huang, A. H. Tendon stem progenitor cells: understanding the biology to inform therapeutic strategies for tendon repair. J. Orthop. Res. 37, 1270–1280 (2019).

    Article  PubMed  Google Scholar 

  34. Schneider, M., Angele, P., Järvinen, T. A. H. & Docheva, D. Rescue plan for Achilles: therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv. Drug. Delivery Rev. 129, 352–375 (2018).

    Article  CAS  Google Scholar 

  35. Sugg, K. B., Lubardic, J., Gumucio, J. P. & Mendias, C. L. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. J. Orthop. Res. 32, 944–951 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dakin, S. G. et al. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PLoS One 7, e32333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl Med. 7, 311ra173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dakin, S. G. et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br. J. Sports Med. 52, 359–367 (2018).

    PubMed  Google Scholar 

  39. Cowin, S. C. & Doty, S. B. Tissue Mechanics 559–594 (Springer, 2007).

  40. Amiel, D., Frank, C., Harwood, F., Fronek, J. & Akeson, W. Tendons and ligaments: a morphological and biochemical comparison. J. Orthop. Res. 1, 257–265 (1983).

    Article  Google Scholar 

  41. Kharaz, Y. A., Canty-Laird, E. G., Tew, S. R. & Comerford, E. J. Variations in internal structure, composition and protein distribution between intra- and extra-articular knee ligaments and tendons. J. Anat. 232, 943–955 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakai, T. et al. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype. J. Orthop. Res. 34, 1361–1372 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian, A. & Schilling, T. F. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 142, 4191–4204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Can, T. et al. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci. 12, 25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benjamin, M. & McGonagle, D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv. Exp. Med. Biol. 649, 57–70 (2009).

    Article  PubMed  Google Scholar 

  46. Sharma, P. & Maffulli, N. Basic biology of tendon injury and healing. Surgeon 3, 309–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    Article  PubMed  Google Scholar 

  50. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Nigg, B. M. & Herzog, W. Biomechanics of the Musculo-Skeletal System 3rd edn (Wiley, 2007).

  52. Scott, S. H. & Winter, D. A. Internal forces at chronic running injury sites. Med. Sci. Sports Exerc. 22, 357–369 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Thompson, J. & Baravarian, B. Acute and chronic Achilles tendon ruptures in athletes. Clin. Podiatric Med. Surg. 28, 117–135 (2011).

    Article  Google Scholar 

  54. Zitnay, J. L. & Weiss, J. A. Load transfer, damage, and failure in ligaments and tendons. J. Orthop. Res. 36, 3093–3104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wall, M. E. et al. in Metabolic Influences on Risk for Tendon Disorders (eds Ackermann, P. W. & Hart, D. A.) 79–95 (Springer, 2016).

  56. Wall, M. et al. Key developments that impacted the field of mechanobiology and mechanotransduction. J. Orthop. Res. 36, 605–619 (2017).

    PubMed  Google Scholar 

  57. Jung, H.-J., Fisher, M. B. & Woo, S. L.-Y. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med. Arthrosc. Rehabil. Ther. Technol. 1, 9 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Wang, J. H.-C., Guo, Q. & Li, B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J. Hand Ther. 25, 133–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Zelzer, E., Blitz, E., Killian, M. L. & Thomopoulos, S. Tendon-to-bone attachment: from development to maturity. Birth Defects Res. C. Embryo Today 102, 101–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cook, J. & Purdam, C. Is compressive load a factor in the development of tendinopathy? Br. J. Sports Med. 46, 163–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Ryzewicz, M. & Wolf, J. M. Trigger digits: principles, management, and complications. J. Hand Surg. Am. 31, 135–146 (2006).

    Article  PubMed  Google Scholar 

  62. Docking, S., Samiric, T., Scase, E., Purdam, C. & Cook, J. Relationship between compressive loading and ECM changes in tendons. Muscles Ligaments Tendons J. 3, 7–11 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marras, W. S., Walter, B. A., Purmessur, D., Mageswaran, P. & Wiet, M. G. The contribution of biomechanical-biological interactions of the spine to low back pain. Hum. Factors 58, 965–975 (2016).

    Article  PubMed  Google Scholar 

  64. Wang, J. H.-C. Mechanobiology of tendon. J. Biomech. 39, 1563–1582 (2006).

    Article  PubMed  Google Scholar 

  65. Grant, T. M., Thompson, M. S., Urban, J. & Yu, J. Elastic fibres are broadly distributed in tendon and highly localized around tenocytes. J. Anat. 222, 573–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grant, T. M., Yapp, C., Chen, Q., Czernuszka, J. T. & Thompson, M. S. The mechanical, structural, and compositional changes of tendon exposed to elastase. Ann. Biomed. Eng. 43, 2477–2486 (2015).

    Article  PubMed  Google Scholar 

  67. Alexander, R. M. Elastic energy stores in running vertebrates. Am. Zool. 24, 85–94 (1984).

    Article  Google Scholar 

  68. Martin, R. B., Burr, D. B., Sharkey, N. A. & Fyhrie, D. P. Skeletal Tissue Mechanics 175–225 (Springer, 2015).

  69. Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M. & Soslowsky, L. J. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21, 413–419 (2003).

    Article  PubMed  Google Scholar 

  70. Xu, Y. & Murrell, G. A. C. The basic science of tendinopathy. Clin. Orthop. Relat. Res. 466, 1528–1538 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Burssens, A. et al. Arguments for an increasing differentiation towards fibrocartilaginous components in midportion Achilles tendinopathy. Knee Surg. Sports Traumatol. Arthrosc. 21, 1459–1467 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Maffulli, N., Barrass, V. & Ewen, S. W. B. Light microscopic histology of Achilles tendon ruptures. Am. J. Sports Med. 28, 857–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Svensson, R. B., Heinemeier, K. M., Couppé, C., Kjaer, M. & Magnusson, S. P. Effect of aging and exercise on the tendon. J. Appl. Physiol. 121, 1353–1362 (2016).

    Article  Google Scholar 

  74. Momersteeg, T. J. A. et al. The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J. Biomech. 28, 745–752 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Attarian, D. E., McCrackin, H. J., DeVito, D. P., McElhaney, J. H. & Garrett, W. E. Biomechanical characteristics of human ankle ligaments. Foot Ankle 6, 54–58 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Corps, A. N. et al. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatology 45, 291–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Galloway, M. T., Lalley, A. L. & Shearn, J. T. The role of mechanical loading in tendon development, maintenance, injury, and repair. J. Bone Joint Surg. Am. 95, 1620–1628 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kayama, T. et al. Gtf2ird1-dependent mohawk expression regulates mechanosensing properties of the tendon. Mol. Cell Biol. 36, 1297–1309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maeda, T. et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr. Biol. 21, 933–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nichols, A. E. C., Settlage, R. E., Werre, S. R. & Dahlgren, L. A. Novel roles for scleraxis in regulating adult tenocyte function. BMC Cell Biol. 19, 14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abe, H. et al. Scleraxis modulates bone morphogenetic protein 4 (BMP4)-Smad1 protein-smooth muscle α-actin (SMA) signal transduction in diabetic nephropathy. J. Biol. Chem. 287, 20430–20442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bagchi, R. A., Wang, R., Jahan, F., Wigle, J. T. & Czubryt, M. P. Regulation of scleraxis transcriptional activity by serine phosphorylation. J. Mol. Cell. Cardiol. 92, 140–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Léjard, V. et al. Scleraxis and NFATc regulate the expression of the pro-α1(I) collagen gene in tendon fibroblasts. J. Biol. Chem. 282, 17665–17675 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Douguet, D. & Honoré, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. A hitchhiker’s guide to mechanobiology. Dev. Cell 21, 35–47 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martino, F., Perestrelo, A. R., Vinarský, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jokinen, J. et al. Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279, 31956–31963 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Das, M., Ithychanda, S., Qin, J. & Plow, E. F. Mechanisms of talin-dependent integrin signaling and crosstalk. Biochim. Biophys. Acta 1838, 579–588 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Bays, J. L. & DeMali, K. A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. 74, 2999–3009 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Popov, C. et al. Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol. Biol. 16, 6 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tetsunaga, T. et al. Mechanical stretch stimulates integrin αVβ3-mediated collagen expression in human anterior cruciate ligament cells. J. Biomech. 42, 2097–2103 (2009).

    Article  PubMed  Google Scholar 

  95. Xu, B. et al. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J. Cell. Physiol. 227, 2722–2729 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Totaro, A., Panciera, T. & Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20, 888–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Nardone, G. et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8, 15321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Watt, K. I. et al. The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat. Commun. 6, 6048 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Deng, Y. et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat. Commun. 9, 4564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Freedman, B. R. et al. Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Sci. Rep. 8, 10854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Rocio Servin-Vences, M., Moroni, M., Lewin, G. R. & Poole, K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6, e21074 (2017).

    Article  PubMed Central  Google Scholar 

  105. Rolfe, R. A. et al. Abnormal fetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J. Orthop. Res. 35, 2135–2144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Woo, S.-H. et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18, 1756–1762 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gilchrist, C. L. et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc. Natl Acad. Sci. USA 116, 1992–1997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wall, M. E. & Banes, A. J. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J. Musculoskelet. Neuronal Interact. 5, 70–84 (2005).

    CAS  PubMed  Google Scholar 

  109. Arnoczky, S. P. et al. Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J. Orthop. Res. 20, 947–952 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. O’Day, D. H. CaMBOT: profiling and characterizing calmodulin-binding proteins. Cell. Signal. 15, 347–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Ono, Y. & Sorimachi, H. Calpains — An elaborate proteolytic system. Biochim. Biophys. Acta 1824, 224–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Evans, W. H. & Martin, P. E. M. Gap junctions: structure and function (review). Mol. Membr. Biol. 19, 121–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Maeda, E. et al. Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading. Biomech. Model. Mechanobiol. 11, 439–447 (2012).

    Article  PubMed  Google Scholar 

  115. Maeda, E. & Ohashi, T. Mechano-regulation of gap junction communications between tendon cells is dependent on the magnitude of tensile strain. Biochem. Biophys. Res. Commun. 465, 281–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. McNeilly, C. M., Banes, A. J., Benjamin, M. & Ralphs, J. R. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J. Anat. 189, 593–600 (1996).

    PubMed  PubMed Central  Google Scholar 

  117. Zhang, J. & H-C Wang, J. Production of PGE 2 increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J. Orthop. Res. 28, 198–203 (2010).

    Article  PubMed  Google Scholar 

  118. Zhang, J. & Wang, J. H.-C. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS One 9, e87706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. John, T. et al. Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. J. Orthop. Res. 28, 1071–1077 (2010).

    CAS  PubMed  Google Scholar 

  120. Stolk, M. et al. New insights into tenocyte-immune cell interplay in an in vitro model of inflammation. Sci. Rep. 7, 9801 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Munger, J. S. & Sheppard, D. Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 3, a005017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Klein, M. B., Yalamanchi, N., Pham, H., Longaker, M. T. & Chan, J. Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J. Hand Surg. Am. 27, 615–620 (2002).

    Article  PubMed  Google Scholar 

  123. Mendias, C. L., Gumucio, J. P. & Lynch, E. B. Mechanical loading and TGF-β change the expression of multiple miRNAs in tendon fibroblasts. J. Appl. Physiol. 113, 56–62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stauber, T., Blache, U. & Snedeker, J. G. Tendon tissue microdamage and the limits of intrinsic repair. Matrix Biol. https://doi.org/10.1016/j.matbio.2019.07.008 (2019).

    Article  PubMed  Google Scholar 

  125. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thankam, F. G. et al. Association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon. Sci. Rep. 8, 8918 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berthet, E. et al. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J. Orthop. Res. 31, 1475–1483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, Q. et al. Cyclic stretching exacerbates tendinitis by enhancing NLRP3 inflammasome activity via F-actin depolymerization. Inflammation 41, 1731–1743 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, K., Asai, S., Yu, B. & Enomoto-Iwamoto, M. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem. Biophys. Res. Commun. 463, 667–672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Archambault, J., Tsuzaki, M., Herzog, W. & Banes, A. J. Stretch and interleukin-1β induce matrix metalloproteinases in rabbit tendon cells in vitro. J. Orthop. Res. 20, 36–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Tsuzaki, M. et al. IL-1β induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. J. Orthop. Res. 21, 256–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Dalbeth, N. et al. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann. Rheum. Dis. 72, 1545–1548 (2013).

    Article  PubMed  Google Scholar 

  133. Czegley, C. et al. A model of chronic enthesitis and new bone formation characterized by multimodal imaging. Dis. Model. Mech. 11, dmm034041 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochemical Sci. 41, 1012–1021 (2016).

    Article  CAS  Google Scholar 

  135. Jozsa, L. et al. Fibronectin and laminin in Achilles tendon. Acta Orthop. Scand. 60, 469–471 (1989).

    Article  CAS  PubMed  Google Scholar 

  136. McKee, T. J., Perlman, G., Morris, M. & Komarova, S. V. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci. Rep. 9, 10542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Zuliani-Alvarez, L. et al. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat. Commun. 8, 1595 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Midwood, K. S. & Orend, G. The role of tenascin-C in tissue injury and tumorigenesis. J. Cell Commun. Signal. 3, 287–310 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Eming, S. A. et al. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl Med. 6, 265sr6 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thomopoulos, S., Parks, W. C., Rifkin, D. B. & Derwin, K. A. Mechanisms of tendon injury and repair. J. Orthop. Res. 33, 832–839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Scott, A. et al. High strain mechanical loading rapidly induces tendon apoptosis: an ex vivo rat tibialis anterior model. Br. J. Sports Med. 39, e25 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Manning, C. N. et al. The early inflammatory response after flexor tendon healing: a gene expression and histological analysis. J. Orthop. Res. 32, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Minutti, C. M., Knipper, J. A., Allen, J. E. & Zaiss, D. M. W. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Dudli, S. et al. ISSLS Prize in Basic Science 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. Eur. Spine J. 26, 1362–1373 (2017).

    Article  PubMed  Google Scholar 

  150. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jameson, J. & Havran, W. L. Skin γδ T-cell functions in homeostasis and wound healing. Immunol. Rev. 215, 114–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Mendias, C. L., Gumucio, J. P., Bakhurin, K. I., Lynch, E. B. & Brooks, S. V. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J. Orthop. Res. 30, 606–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951–966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Howell, K. et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci. Rep. 7, 45238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Voleti, P. B., Buckley, M. R. & Soslowsky, L. J. Tendon healing: repair and regeneration. Annu. Rev. Biomed. Eng. 14, 47–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Ranganathan, V., Gracey, E., Brown, M. A., Inman, R. D. & Haroon, N. Pathogenesis of ankylosing spondylitis – recent advances and future directions. Nat. Rev. Rheumatol. 13, 359–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Rees, J. D., Wilson, A. M. & Wolman, R. L. Current concepts in the management of tendon disorders. Rheumatology 45, 508–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Dean, B. J. F., Franklin, S. L. & Carr, A. J. A systematic review of the histological and molecular changes in rotator cuff disease. Bone Joint Res. 1, 158–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Agarwal, S. et al. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cell 35, 705–710 (2017).

    Article  CAS  Google Scholar 

  164. Khan, K. M., Cook, J. L., Bonar, F., Harcourt, P. & Åstrom, M. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 27, 393–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. O’Brien, E. J. O., Frank, C. B., Shrive, N. G., Hallgrímsson, B. & Hart, D. A. Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. Int. J. Exp. Pathol. 93, 319–331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Varkas, G. et al. Effect of mechanical stress on magnetic resonance imaging of the sacroiliac joints: assessment of military recruits by magnetic resonance imaging study. Rheumatology 57, 508–513 (2018).

    Article  PubMed  Google Scholar 

  167. Weber, U. et al. Frequency and anatomic distribution of magnetic resonance imaging features in the sacroiliac joints of young athletes. Arthritis Rheumatol. 70, 736–745 (2018).

    Article  PubMed  Google Scholar 

  168. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    Article  PubMed  Google Scholar 

  169. Zeng, P., Klareskog, L., Alfredsson, L. & Bengtsson, C. Physical workload is associated with increased risk of rheumatoid arthritis: results from a Swedish population-based case–control study. RMD Open 3, e000324 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Watad, A. et al. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Front. Immunol. 9, 2668 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mankia, K. et al. Identification of a distinct imaging phenotype may improve the management of palindromic rheumatism. Ann. Rheum. Dis. 78, 43–50 (2019).

    Article  PubMed  Google Scholar 

  172. Deal, C. Bone loss in rheumatoid arthritis: systemic, periarticular, and focal. Curr. Rheumatol. Rep. 14, 231–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Lories, R. J. U. & Schett, G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum. Dis. Clin. North Am. 38, 555–567 (2012).

    Article  PubMed  Google Scholar 

  174. Finzel, S. et al. Inflammatory bone spur formation in psoriatic arthritis is different from bone spur formation in hand osteoarthritis. Arthritis Rheumatol. 66, 2968–2975 (2014).

    Article  PubMed  Google Scholar 

  175. Sieper, J. & Poddubnyy, D. Axial spondyloarthritis. Lancet 390, 73–84 (2017).

    Article  PubMed  Google Scholar 

  176. Veale, D. J. & Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 391, 2273–2284 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Malmström, V., Catrina, A. I. & Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol. 17, 60–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Baeten, D. et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382, 1705–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Genovese, M. C. et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72, 863–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Deodhar, A. et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 391, 2213–2224 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Burmester, G. R., Bijlsma, J. W. J., Cutolo, M. & McInnes, I. B. Managing rheumatic and musculoskeletal diseases — past, present and future. Nat. Rev. Rheumatol. 13, 443–448 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. September, A., Rahim, M. & Collins, M. in Metabolic Influences on Risk for Tendon Disorders (eds Ackermann, P. W. & Hart, D. A.) 109–116 (Springer, 2016).

  186. Jelinsky, S. A. et al. Regulation of gene expression in human tendinopathy. BMC Musculoskelet. Disord. 12, 86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dean, B. J. F., Dakin, S. G., Millar, N. L. & Carr, A. J. Review: emerging concepts in the pathogenesis of tendinopathy. Surgeon 15, 349–354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Dakin, S. G. et al. Persistent stromal fibroblast activation is present in chronic tendinopathy. Arthritis Res. Ther. 19, 16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Abraham, A. C. et al. Targeting the NF-κB signaling pathway in chronic tendon disease. Sci. Transl Med. 11, eaav4319 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Iatridis, J. C., Michalek, A. J., Purmessur, D. & Korecki, C. L. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell. Mol. Bioeng. 2, 437–447 (2009).

    Article  PubMed  Google Scholar 

  191. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Walter, Yz, B. A. et al. Complex loading affects intervertebral disc mechanics and biology. Osteoarthr. Cartil. 19, 1011–1018 (2011).

    Article  CAS  Google Scholar 

  193. Gorth, D. J., Shapiro, I. M. & Risbud, M. V. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 10, 7 (2019).

    Article  CAS  Google Scholar 

  194. Phillips, K. L. E., Jordan-Mahy, N., Nicklin, M. J. H. & Le Maitre, C. L. Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Ann. Rheum. Dis. 72, 1860–1867 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Tan, S. & Ward, M. M. Computed tomography in axial spondyloarthritis. Curr. Opin. Rheumatol. 30, 334–339 (2018).

    Article  PubMed  Google Scholar 

  196. Tan, S., Yao, J., Flynn, J. A., Yao, L. & Ward, M. M. Quantitative syndesmophyte measurement in ankylosing spondylitis using CT: longitudinal validity and sensitivity to change over 2 years. Ann. Rheum. Dis. 74, 437–443 (2015).

    Article  PubMed  Google Scholar 

  197. Tan, S., Dasgupta, A., Flynn, J. A. & Ward, M. M. Aortic-vertebral interaction in ankylosing spondylitis: syndesmophyte development at the juxta-aortic vertebral rim. Ann. Rheum. Dis. 78, 922–928 (2019).

    Article  PubMed  Google Scholar 

  198. de Bruin, F. et al. Prevalence of degenerative changes of the spine on magnetic resonance images and radiographs in patients aged 16–45 years with chronic back pain of short duration in the Spondyloarthritis Caught Early (SPACE) cohort. Rheumatology 55, 56–65 (2016).

    Article  PubMed  Google Scholar 

  199. de Bruin, F. et al. Prevalence of degenerative changes and overlap with spondyloarthritis-associated lesions in the spine of patients from the DESIR cohort. RMD Open 4, e000657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lories, R. J. U., Matthys, P., de Vlam, K., Derese, I. & Luyten, F. P. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann. Rheum. Dis. 63, 595–598 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. De Wilde, K. et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann. Rheum. Dis. 76, 585–592 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ruutu, M. et al. β-Glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    Article  PubMed  Google Scholar 

  205. Cescon, M., Gattazzo, F., Chen, P. & Bonaldo, P. Collagen VI at a glance. J. Cell Sci. 128, 3525–3531 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Cambré, I. et al. Running promotes chronicity of arthritis by local modulation of complement activators and impairing T regulatory feedback loops. Ann. Rheum. Dis. 78, 787–795 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Murchison, N. D. et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134, 2697–2708 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Pryce, B. A. et al. Recruitment and maintenance of tendon progenitors by TGF signaling are essential for tendon formation. Development 136, 1351–1361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Killian, M. L. & Thomopoulos, S. Scleraxis is required for the development of a functional tendon enthesis. FASEB J. 30, 301–311 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Liu, W. et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol. Cell. Biol. 30, 4797–4807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Blitz, E., Sharir, A., Akiyama, H. & Zelzer, E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 140, 2680–2690 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Nakahara, H. et al. Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation. Arthritis Rheum. 65, 2081–2089 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Suzuki, H. et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proc. Natl Acad. Sci. USA 113, 7840–7845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Rossetti, L. et al. The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Fredberg, U. & Stengaard-Pedersen, K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand. J. Med. Sci. Sports 18, 3–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. van Dijk, C. N., van Sterkenburg, M. N., Wiegerinck, J. I., Karlsson, J. & Maffulli, N. Terminology for Achilles tendon related disorders. Knee Surg. Sports Traumatol. Arthrosc. 19, 835–841 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Waldecker, U., Hofmann, G. & Drewitz, S. Epidemiologic investigation of 1394 feet: coincidence of hindfoot malalignment and Achilles tendon disorders. Foot Ankle Surg. 18, 119–123 (2012).

    Article  PubMed  Google Scholar 

  219. Strocchi, R. et al. Human Achilles tendon: morphological and morphometric variations as a function of age. Foot Ankle 12, 100–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  220. Osti, O. L., Vernon-Roberts, B., Moore, R. & Fraser, R. D. Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. J. Bone Joint Surg. Br. 74, 678–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  221. van der List, J. P., Mintz, D. N. & DiFelice, G. S. The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop. J. Sport. Med. 5, 2325967117709966 (2017).

    Google Scholar 

  222. Chen, L., Kim, P. D., Ahmad, C. S. & Levine, W. N. Medial collateral ligament injuries of the knee: current treatment concepts. Curr. Rev. Musculoskelet. Med. 1, 108–113 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of I.B.M. is supported by the Versus Arthritis Centre of Excellence for Rheumatoid Arthritis Pathogenesis. The work of H.A. is supported by the Japan Agency for Medical Research and Development (Core Research for Evolutional Science and Technology grants) and U.S. National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases (grants AR050631 and AR065379). The work of D.E. is supported by FWO-VI, Research Council of Ghent University and Interuniversity Attraction Pole grant Devrepair from Belspo Agency (project P7/07) and an FWO Excellence of Science (EOS) Grant.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and A.B. researched data for the article. E.G., A.B. and I.C. wrote the article. All authors provided a substantial contribution to discussions of content and reviewed or edited the article before submission.

Corresponding authors

Correspondence to Eric Gracey or Dirk Elewaut.

Ethics declarations

Competing interests

G.S. declares he has received funding from BMS, Celgene, Janssen, Novartis and UCB in the area of psoriatic arthritis research. R.L. declares he has received consultancy, speaker’s fees or research support from Celgene, Eli-Lilly, Janssen, Novartis and UCB in the areas of psoriatic arthritis and spondyloarthritis research. I.B.M. declares he has received funding from BMS, Celgene, Janssen, Novartis and UCB in the area of psoriatic arthritis research. D.E. declares he has received funding from Boehringer Ingelheim, Janssen, Novartis and Pfizer in the areas of psoriatic arthritis and spondyloarthritis research. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Traweger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Force

A vector quantity that describes the action of one structure on another; measured in Newtons.

Strain

Deformation that occurs at a point in a structure under loading; measured as the percentage change in length from the resting state.

Load

The sum of all force components acting on an object or body.

Mechanical stress

Mechanical load acting on cells or tissues as a physical stressor that elicits a biological response to ensure homeostasis.

Stress

The force per unit area that develops within a structure in response to externally applied loads; measured in Newtons per metre squared or Megapascals.

Periosteum

A fibrous tissue that envelops non-joint surfaces of bone and contains supportive tissue for the cortical bone, such as blood vessels and nerves.

Metaphyses

The flare (or cone-shaped) portion of long bones that connects the diaphysis to the growth plate.

Diaphyses

The conical shaft of long bones.

Epiphyses

The portion of bones above the growth plate that interfaces with other bones to form the joint.

Strength

The maximum amount of force that a material can absorb before failure.

Modulus

The ratio of stress to strain in the elastic region of a stress–strain curve.

Stiffness

The ratio of load to elongation in the elastic region of a stress–strain curve.

Mechanotransduction

The processes through which cells sense mechanical force and translate it into biological responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracey, E., Burssens, A., Cambré, I. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 16, 193–207 (2020). https://doi.org/10.1038/s41584-019-0364-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0364-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing