Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway

Abstract

Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine–threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZIC2 is correlated with NPC progression.
Fig. 2: NPC stem cells show increased expression of ZIC2.
Fig. 3: ZIC2 silencing suppresses self-renewal and tumorigenic properties in NPC stem cells.
Fig. 4: miR-873 overexpression is able to inhibit CSC self-renewal, tumor formation, and growth in NPC.
Fig. 5: miR-873 negatively targets ZIC2 in NPC stem cells.
Fig. 6: miR-873 inhibits CSC self-renewal in NPC by inhibiting AKT signaling pathway activation.
Fig. 7: Molecular mechanism of miR-873/ZIC2/AKT in nasopharyngeal carcinoma.

Similar content being viewed by others

References

  1. Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016;387:1012–24.

    PubMed  Google Scholar 

  2. Razak AR, Siu LL, Liu FF, Ito E, O’Sullivan B, Chan K. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer. 2010;46:1967–78.

    PubMed  Google Scholar 

  3. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013. https://pubmed.ncbi.nlm.nih.gov/23744710, https://doi.org/10.1002/0471141755.ph1425s61.

  4. Wei P, Niu M, Pan S, Zhou Y, Shuai C, Wang J, et al. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Res Ther. 2014;5:44.

    PubMed  PubMed Central  Google Scholar 

  5. Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, et al. Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets. 2012;16:1041–54.

    CAS  PubMed  Google Scholar 

  6. Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, et al. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest. 2015;125:3795–808.

    PubMed  PubMed Central  Google Scholar 

  7. Inaguma S, Ito H, Riku M, Ikeda H, Kasai K. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2. Oncotarget. 2015;6:28257–68.

    PubMed  PubMed Central  Google Scholar 

  8. Marchini S, Poynor E, Barakat RR, Clivio L, Cinquini M, Fruscio R, et al. The zinc finger gene ZIC2 has features of an oncogene and its overexpression correlates strongly with the clinical course of epithelial ovarian cancer. Clin Cancer Res. 2012;18:4313–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu SX, Zhang CZ, Luo RZ, Wang CH, Liu LL, Fu J, et al. Zic2 promotes tumor growth and metastasis via PAK4 in hepatocellular carcinoma. Cancer Lett. 2017;402:71–80.

    CAS  PubMed  Google Scholar 

  10. Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji-Asgarzadeh K, Safarzadeh E, et al. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol. 2019;234:10002–17.

    CAS  PubMed  Google Scholar 

  11. Yang HW, Xing H, Johnson MD. A major role for microRNAs in glioblastoma cancer stem-like cells. Arch Pharm Res. 2015;38:423–34.

    CAS  PubMed  Google Scholar 

  12. Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, et al. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem. 2012;287:9962–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis. 2013;34:530–8.

    CAS  PubMed  Google Scholar 

  14. Zhang L, Deng T, Li X, Liu H, Zhou H, Ma J, et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis. 2010;31:559–66.

    CAS  PubMed  Google Scholar 

  15. Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, et al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS ONE. 2012;7:e46367.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13:633–41.

    CAS  PubMed  Google Scholar 

  17. Wu DD, Li XS, Meng XN, Yan J, Zong ZH. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1. Tumour Biol. 2016;37:10499–506.

    CAS  PubMed  Google Scholar 

  18. Han G, Zhang L, Ni X, Chen Z, Pan X, Zhu Q, et al. MicroRNA-873 promotes cell proliferation, migration, and invasion by directly targeting TSLC1 in hepatocellular carcinoma. Cell Physiol Biochem. 2018;46:2261–70.

    CAS  PubMed  Google Scholar 

  19. Liang Y, Zhang P, Li S, Li H, Song S, Lu B. MicroRNA-873 acts as a tumor suppressor in esophageal cancer by inhibiting differentiated embryonic chondrocyte expressed gene 2. Biomed Pharmacother. 2018;105:582–9.

    CAS  PubMed  Google Scholar 

  20. Yu JH, Chen L, Yu JY, Luo HQ, Wang L. PI3K-PKB-mTOR hyperactivation in relation to nasopharyngeal carcinoma progression and prognosis. J Cell Biochem. 2019;120:10186–94.

    CAS  PubMed  Google Scholar 

  21. Xu S, Zhao N, Hui L, Song M, Miao ZW, Jiang XJ. MicroRNA-124-3p inhibits the growth and metastasis of nasopharyngeal carcinoma cells by targeting STAT3. Oncol Rep. 2016;35:1385–94.

    CAS  PubMed  Google Scholar 

  22. Chen KH, Guo Y, Li L, Qu S, Zhao W, Lu QT, et al. Cancer stem cell-like characteristics and telomerase activity of the nasopharyngeal carcinoma radioresistant cell line CNE-2R. Cancer Med. 2018;7:4755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Juczynska K, Wozniacka A, Waszczykowska E, Danilewicz M, Wagrowska-Danilewicz M, Wieczfinska J, et al. Expression of the JAK/STAT signaling pathway in bullous pemphigoid and dermatitis herpetiformis. Mediators Inflamm. 2017;2017:6716419.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi Y, Qin N, Zhou Q, Chen Y, Huang S, Chen B, et al. Role of IQGAP3 in metastasis and epithelial-mesenchymal transition in human hepatocellular carcinoma. J Transl Med. 2017;15:176.

    PubMed  PubMed Central  Google Scholar 

  25. Wang J, Ma W, Liu Y. Long non-coding RNA HULC promotes bladder cancer cells proliferation but inhibits apoptosis via regulation of ZIC2 and PI3K/AKT signaling pathway. Cancer Biomark. 2017;20:425–34.

    CAS  PubMed  Google Scholar 

  26. Huang S, Jin A. ZIC2 promotes viability and invasion of human osteosarcoma cells by suppressing SHIP2 expression and activating PI3K/AKT pathways. J Cell Biochem. 2018;119:2248–57.

    CAS  PubMed  Google Scholar 

  27. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 2007;67:3716–24.

    CAS  PubMed  Google Scholar 

  28. Zimmerman AL, Wu S. MicroRNAs, cancer and cancer stem cells. Cancer Lett. 2011;300:10–9.

    CAS  PubMed  Google Scholar 

  29. Zhao L, Fong AHW, Liu N, Cho WCS. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci. 2018;25:16.

    PubMed  PubMed Central  Google Scholar 

  30. Spence T, Bruce J, Yip KW, Liu FF. MicroRNAs in nasopharyngeal carcinoma. Chin Clin Oncol. 2016;5:17.

    PubMed  Google Scholar 

  31. Wang RJ, Li JW, Bao BH, Wu HC, Du ZH, Su JL, et al. MicroRNA-873 (miRNA-873) inhibits glioblastoma tumorigenesis and metastasis by suppressing the expression of IGF2BP1. J Biol Chem. 2015;290:8938–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui J, Yang Y, Li H, Leng Y, Qian K, Huang Q, et al. MiR-873 regulates ERalpha transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene. 2015;34:3895–907.

    CAS  PubMed  Google Scholar 

  33. Jiang X, Feng L, Dai B, Li L, Lu W. Identification of key genes involved in nasopharyngeal carcinoma. Braz J Otorhinolaryngol. 2017;83:670–6.

    PubMed  Google Scholar 

  34. Wang YF, Yang HY, Shi XQ, Wang Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther. 2018;19:1162–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Yang S, Zeng J, Chen M. miR12715p inhibits cell proliferation and induces apoptosis in acute myeloid leukemia by targeting ZIC2. Mol Med Rep. 2019;19:508–14.

    CAS  PubMed  Google Scholar 

  36. Chan DW, Liu VW, Leung LY, Yao KM, Chan KK, Cheung AN, et al. Zic2 synergistically enhances Hedgehog signalling through nuclear retention of Gli1 in cervical cancer cells. J Pathol. 2011;225:525–34.

    CAS  PubMed  Google Scholar 

  37. Zhang JS, Zhao Y, Lv Y, Liu PY, Ruan JX, Sun YL, et al. miR-873 suppresses H9C2 cardiomyocyte proliferation by targeting GLI1. Gene. 2017;626:426–32.

    CAS  PubMed  Google Scholar 

  38. Mokhlis HA, Bayraktar R, Kabil NN, Caner A, Kahraman N, Rodriguez-Aguayo C, et al. The Modulatory Role of MicroRNA-873 in the Progression of KRAS-Driven Cancers. Mol Ther Nucleic Acids. 2019;14:301–17.

    CAS  PubMed  Google Scholar 

  39. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.

    CAS  PubMed  Google Scholar 

  40. Zhang Y, Yang L, Ling C, Heng W. HuR facilitates cancer stemness of lung cancer cells via regulating miR-873/CDK3 and miR-125a-3p/CDK3 axis. Biotechnol Lett. 2018;40:623–31.

    CAS  PubMed  Google Scholar 

  41. Cheung CC, Lun SW, Chung GT, Chow C, Lo C, Choy KW, et al. MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma. BMC Cancer. 2016;16:495.

    PubMed  PubMed Central  Google Scholar 

  42. Shen ZH, Zhao KM, Du T. HOXA10 promotes nasopharyngeal carcinoma cell proliferation and invasion via inducing the expression of ZIC2. Eur Rev Med Pharm Sci. 2017;21:945–52.

    Google Scholar 

  43. Buecker C, Srinivasan R, Wu Z, Calo E, Acampora D, Faial T, et al. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell. 2014;14:838–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin J, Ji J, Deng R, Tang J, Yang F, Feng GK, et al. DC120, a novel AKT inhibitor, preferentially suppresses nasopharyngeal carcinoma cancer stem-like cells by downregulating Sox2. Oncotarget 2015;6:6944–58.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere appreciation to the reviewers for their helpful comments on this article.

Author information

Authors and Affiliations

Authors

Contributions

BL, FL, XL, and LL designed the study. BL and FL collated the data, carried out data analyses, and produced the initial draft of the manuscript. XL and LL contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript

Corresponding author

Correspondence to Liqiang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, B., Li, F., Liu, X. et al. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 28, 74–88 (2021). https://doi.org/10.1038/s41417-020-0185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0185-8

This article is cited by

Search

Quick links