See global airing times

Five ways we can feed the world in 2050

share

Agriculture is facing an unprecedented challenge – here are five things we need to change.

As our global population continues to rise, some estimates suggest it could reach a whopping 10 billion people by 2050. To feed that many people, we will need to produce record quantities of food.

The scale of the challenge is epic. With only 30 seasons of planting and harvest left before the population could hit that 10 billion figure, it’s clear that agriculture as we know it has to change, if we are to have any hope of feeding the planet.

Over the past six months I’ve travelled all over Europe speaking to pioneering scientists and engineers, global thought leaders, savvy retailers and of course, knowledgeable, resilient farmers, for the BBC World News and BBC Future series, Follow the Food. The aim is to examine a truck-load of issues around food supply and find some potential solutions for our future.

This much-needed transformation – of not just agriculture but our whole food supply chain – is already under way. Here are five solutions that could help us get ready to feed the 10 billion.

Creating robot farmers

Before you scream at your screen about robots taking our jobs, hear me out. Many farmers say that time in the field, sat in a tractor for hours, is not just repetitive and boring, but robs them of time they could be spending on other key jobs they need to do to manage their business.

The Small Robot Company has created three, um, small robots: Tom, Dick and Harry. Tom takes geotagged images of plants in the fiel, which are sent back for analysis. That leads to Dick venturing out to spray – with precision – individual crops, eliminating the need for blanket spraying fields, and avoiding unnecessary polluting run-off and saving resources. Harry is the planting robot, complete with a robotic drill. Together, they carry out the monotonous tasks conventionally done by a human – with greater accuracy and less waste.

Preserving precious dirt

One reason small, mobile robots could be good news for farming is that they can replace a lot of the work done by large conventional tractors. Ordinary tractors are heavy. When they roll across the field they compact the soil. That crushes the gaps inside, reducing the size of the pores that hold air and water. This compaction significantly affects the soil’s ability to hold onto water and so a crop’s ability to take that up, along with the nutrients.

Using smaller, lighter robots to do the jobs currently performed by tractors could hugely help reduce these issues. Now, a small robot can’t pull large, heavy machinery like a tiller or cultivator. But they’re not looking to simply repeat traditional farming methods.

Circular cucumber

Giving waste a second chance

One of the most shocking facts I learned is the sheer amount of good, edible food that gets wasted. According to the United Nations, “An estimated third of all food produced ends up rotting in the bins of consumers and retailers, or spoiling due to poor transportation and harvesting practices.”

An estimated third of all food produced ends up rotting in the bins of consumers and retailers.


One country with a big waste problem is the Netherlands – the second biggest exporter of agricultural products (by value) after the US. The sheer scale of the flow of food through the Netherlands means waste is a big issue. The Dutch government has pledged to become the first European country to halve the amount of discarded food by 2030.

There are countless brilliant ideas and initiatives hoping to help, but one approach that I thought was brilliant was using apps like “Too Good To Go”. This app enables retailers to shift food destined for the bin – but that’s still perfectly edible – to customers at a reduced cost.

Slowing the ageing process

We can’t yet turn back the clock but, at least in fruit, we can slow the dial.


The bananas I eat at home in the UK could have travelled from Ecuador, the Dominican Republic, Costa Rica or a field even further afield. To get to me they will have been picked green, perhaps spent 40 days on a boat, and then eventually ended up in the supermarket where, in order to be picked from the shelf, they have to be a perfect yellow, with no black spots or brown patches. That takes incredible, careful management to achieve.

We can’t yet turn back the clock but, at least in fruit, we can slow the dial.


If a banana ripens too early in the process, it releases ethylene gas, which triggers ripening in other bananas. It only takes one rogue ripe banana to take down 15% of a shipment. That’s a huge pile of wasted bananas.

What some scientists in Norwich, UK, are doing is editing the genome of the bananas – modifying specific letters in their DNA – so that they produce far less ethylene. This could lead to less wastage en route and extend the banana’s shelf life in the supermarket. In some parts of the world, this could translate into real supply chains. But in other places, such as the EU, gene-edited crops are very tightly regulated with a lengthy approval process.

Stages of bananas ripening

Making smarter choices

Spending time with farmers, producers, retailers and consumers, I quickly saw how our current ways of growing, processing and selling food just aren’t scalable or sustainable.

The only way we can feed 10 billion people by 2050 is if the farming and food industries become much more sustainable. And that requires changes to the whole model of growing, processing, transporting, storing and selling. It means a lot of businesses and governments need to take action. But so too do we all.

Whether that’s going to the market and choosing the most “ugly” veg for dinner, encouraging supermarkets to change their labelling to show us the carbon or water footprint of our food (so you can choose an avocado that’s used less of our rapidly depleting fresh water supply to grow), or using new tech to avoid waste, there’s so much we can be doing to value our food and value its producers.

Building a world fed by sustainable agriculture is a daunting task. But farmers, scientists, engineers, retailers, business leaders and governments are all coming together to ensure we have enough food in the future. And I will certainly be thinking about what changes I can make on an individual level to join the effort.



--

Greg Foot is a presenter of the BBC World News TV series Follow the Food. These are Greg Foot's personal views and reflections.

This article is part of a new multimedia series, Follow the Food by BBC Future in collaboration with BBC World News. Follow the Food investigates how agriculture is responding to the profound challenges of climate change, environmental degradation and a growing global population.

Follow the Food traces emerging answers to these problems – both high-tech and low-tech, local and global – from farmers, growers and researchers across six continents.

Image copyright: Getty Images

share