Award Abstract # 1562102
GOALI: Diamond Coated Carbon Fiber Wire Sawing of Silicon Ingots

NSF Org: CMMI
Div Of Civil, Mechanical, & Manufact Inn
Recipient: WASHINGTON UNIVERSITY, THE
Initial Amendment Date: March 2, 2016
Latest Amendment Date: February 6, 2019
Award Number: 1562102
Award Instrument: Standard Grant
Program Manager: Steve Schmid
CMMI
 Div Of Civil, Mechanical, & Manufact Inn
ENG
 Directorate For Engineering
Start Date: April 1, 2016
End Date: April 30, 2019 (Estimated)
Total Intended Award Amount: $299,999.00
Total Awarded Amount to Date: $219,983.00
Funds Obligated to Date: FY 2016 = $135,982.00
History of Investigator:
  • Parag Banerjee (Principal Investigator)
    parag.banerjee@ucf.edu
  • Omid Rezvanian (Co-Principal Investigator)
Recipient Sponsored Research Office: Washington University
ONE BROOKINGS DR
SAINT LOUIS
MO  US  63110
(314)747-4134
Sponsor Congressional District: 01
Primary Place of Performance: Washington University
MO  US  63130-4899
Primary Place of Performance
Congressional District:
01
Unique Entity Identifier (UEI): L6NFUM28LQM5
Parent UEI:
NSF Program(s): Manufacturing Machines & Equip,
GOALI-Grnt Opp Acad Lia wIndus,
EPSCoR Co-Funding
Primary Program Source: 01001617DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 082E, 083E, 116E, 1468, 1504, 9146, 9150, 9178, 9231, 9251, MANU
Program Element Code(s): 146800, 150400, 915000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.041

ABSTRACT

Diamond coated wire sawing of silicon ingots into individual wafers accounts for 11 percent of solar cell production costs. This cost is primarily associated with generation of silicon powder which is a waste stream and requires energy intensive recycling strategies. Thinner wires can lead to minimal powder generation during wire sawing. However, thinner steel wires (smaller than 100 microns in diameter) break easily under the stress required for efficient cutting of silicon. This Grant Opportunity for Academic Liaison with Industry (GOALI) award supports scientific investigations on the use of carbon fiber wires smaller than 100 microns in diameter in diamond coated wire sawing of silicon ingots into wafers. Research results from this project will lead to reduced wastage of silicon and, therefore, reduced dollar-per-watt of silicon based solar cells.

The first research objective is to establish relationships between sawing conditions (such as wire velocity and normal force) and the chemical and structural changes of individual diamond particles coated on a carbon fiber wire. The changes observed in the diamond particles are softening (i.e., graphitization), cleavage, blunting, or complete removal from the carbon fiber wire. The approach to achieve this objective is to measure chemical and structural changes after sawing in diamond particles, carbon fiber wire, and generated silicon powder using micro-Raman spectroscopy. This technique can map chemical and structural changes in the diamond particles, carbon fiber wire and the silicon powder with micron scale spatial resolution. An industrial sawing machine, and single crystalline silicon ingots with a 15 cm x 15 cm square cross-section, will be used for sawing experiments. Wire velocities of up to 25 m/s and a normal force of up to 15 N will be used. The second research objective is to understand the effects of wear of diamond particles and carbon fiber on sawing rate. The approach to achieve this objective is to measure, in situ, wire bowing of the diamond coated carbon fiber wire as it performs sawing. This allows estimation of wire tension and frictional forces experienced by the wire inside the silicon kerf during sawing. As wear proceeds, wire bowing increases and so do frictional forces. Sawing rate will be measured as the vertical velocity of the silicon ingot as it presses down on the wire. Parameters such as carbon fiber wire diameter (from 60 µm to 100 µm) and diamond size (from 6 µm to 20 µm) will be varied.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Sriya Banerjee, Junting Yang, JunnanWu, Michelle Heredia, Zhengning Gao, Yoon Myung, Omid Rezvanian, Parag Banerjee "Phase and stress evolution of Si swarf in the diamond-coated wire sawing of Si ingots" The International Journal of Advanced Manufacturing Technology , v.89 , 2017 , p.735 10.1007/s00170-016-9102-6

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page