Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of polyaniline nanomatrix formed in natural rubber

Abstract

Natural rubber-grafted polyaniline with a nanomatrix structure was prepared and characterized. The graft copolymerization of aniline on natural rubber was performed in the latex stage. Factorial experimental design and univariate experiments were used to evaluate the effect of the factors on the conversion of aniline in the graft copolymerization. The structure of the products was characterized through 1H-NMR spectroscopy. The thermal properties, electrical conductivity, and morphology of the products were investigated. The results from the factorial experimental design showed that reaction temperature was the most important factor affecting the conversion, pH was the next most important, and the other factors were relatively unimportant. Polyaniline was confirmed to graft onto natural rubber and form a nanomatrix structure in the resulting material. The thermal properties and electrical conductivity of natural rubber-grafted polyaniline with a nanomatrix structure were improved compared to those of a polyaniline/natural rubber blend with an island-matrix structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moliton A, Hiorns RC. Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym Int. 2004;53:1397–412.

    Article  CAS  Google Scholar 

  2. Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met. 2002;125:23–42.

    Article  CAS  Google Scholar 

  3. Sharma SK, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications. Curr Appl Phys. 2003;3:307–16.

    Article  Google Scholar 

  4. Yuping D, Shunhua L, Hongtao G. Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater. 2005;6:513–8.

    Article  Google Scholar 

  5. Li W, Wan M. Porous polyaniline films with high conductivity. Synth Met. 1998;92:121–6.

    Article  CAS  Google Scholar 

  6. Robert AD. Natural rubber science and technology. New York: Oxford University Press; 1988.

  7. Gent AN, Kim HJ. Tear strength of stretched rubber. Rubber Chem Technol. 1978;51:35–44.

    Article  CAS  Google Scholar 

  8. Yong KC. Epoxidised natural rubber–polyaniline dodecylbenzenesulfonate (ENR-PAni.DBSA) blends with adjustable electrostrictive properties. Polym Polym Compos. 2018;26:346–57.

    CAS  Google Scholar 

  9. Da Silva MJ, Sanches AO, Malmonge LF, Malmonge JA. Electrical, mechanical, and thermal analysis of natural rubber/polyaniline-Dbsa composite. Mat Res. 2014;17:59–63.

    Article  Google Scholar 

  10. Khan I, Poh BT. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber. Mater Des. 2011;32:2513–9.

    Article  CAS  Google Scholar 

  11. Balberg I. Excluded-volume explanation of Archie’s law. Phys Rev B. 1986;33:3618–20.

    Article  CAS  Google Scholar 

  12. Lehrle RS, Willis SL. Modification of natural rubber: a study to assess the effect of vinyl acetate on the efficiency of grafting methyl methacrylate on rubber in latex form, in the presence of azo-bis-isobutyronitrile. Polymer. 1997;38:5937–46.

    Article  CAS  Google Scholar 

  13. Suksawad P, Yamamoto Y, Kawahara S. Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene. Eur Polym J. 2011;47:330–7.

    Article  CAS  Google Scholar 

  14. Yusof NH, Kosugi K, Song TK, Kawahara S. Preparation and characterization of poly(stearyl methacrylate) grafted natural rubber in latex stage. Polymer. 2016;88:43–51.

    Article  CAS  Google Scholar 

  15. Nguyen TH, Do QV, Tran AD, Kawahara S. Preparation of hydrogenated natural rubber with nanomatrix structure. Polym Adv Tech. 2020;31:86–93.

    Article  CAS  Google Scholar 

  16. Pukkate N, Yamamoto Y, Kawahara S. Mechanism of graft copolymerization of styrene onto deproteinized natural rubber. Colloid Polym Sci. 2008;286:411–6.

    Article  CAS  Google Scholar 

  17. Kawahara S, Chaikumpollert O, Akabori K, Yamamoto Y. Morphology and properties of natural rubber with nanomatrix of non-rubber components. Polym Adv Tech. 2011;22:2665–7.

    Article  CAS  Google Scholar 

  18. Kawahara S, Kawazura T, Sawada T, Isono Y. Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer. 2003;44:4527–31.

    Article  CAS  Google Scholar 

  19. Kosugi K, Sutthangkul R, Chaikumpollert O, Yamamoto Y, Sakdapipanich J, Isono Y, et al. Preparation and characterization of natural rubber with soft nanomatrix structure. Colloid Polym Sci. 2012;290:1457–62.

    Article  CAS  Google Scholar 

  20. Gannoruwa A, Sumita M, Kawahara S. Highly enhanced mechanical properties in natural rubber prepared with a nanodiamond nanomatrix structure. Polymer. 2017;126:40–47.

    Article  CAS  Google Scholar 

  21. Fukuhara L, Kako N, Thuong NT, Loikulant S, Suchiva K, Kosugi K, et al. Nanomatrix structure formed by graft-copolymerization of styrene onto fresh natural rubber. Rubber Chem Technol. 2015;88:117–24.

    Article  CAS  Google Scholar 

  22. Kawahara S, Klinklai W, Kuroda H, Isono Y. Removal of proteins from natural rubber with urea, Polym. Adv Tech. 2004;15:181–4.

    Article  CAS  Google Scholar 

  23. Sansatsadeekul J, Sakdapipanich J, Rojruthai P. Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng. 2011;111:628–34.

    Article  CAS  Google Scholar 

  24. Cornish K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry. 2001;57:1123–34.

    Article  CAS  Google Scholar 

  25. Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG. Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf A. 2011;390:157–66.

    Article  CAS  Google Scholar 

  26. Tang SJ, Wang AT, Lin SY, Huang KY, Yang CC, Yeh JM, et al. Polymerization of aniline under various concentrations of APS and HCl. Polym J. 2011;43:667–75.

    Article  CAS  Google Scholar 

  27. Marjanovic GC. Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met. 2013;177:1–47.

    Article  Google Scholar 

  28. Marjanovic B, Juranic I, Ciric-Marjanovic G. Reply to “Comment on ‘Revised mechanism of Boyland Sims oxidation’”. J Phys Chem A. 2011;115:7865–8.

    Article  CAS  Google Scholar 

  29. Contreras EAZ, Leal MS, Escobar CAH, Hoshina Y, Lozano JFG, Kobayashi T. Synthesis of core–shell composites using an inverse surfmer. J Colloid Interface Sci. 2012;377:231–6.

    Article  Google Scholar 

  30. Wang X, Sun T, Wang C, Wang C, Zhang W, Wei Y. 1H-NMR determination of the doping level of doped polyaniline. Macromol Chem Phys. 2010;211:1814–9.

    Article  CAS  Google Scholar 

  31. Aubin M, Prud’homme RE. Analysis of the glass transition temperature of miscible polymer blends. Macromolecules. 1988;21:2945–9.

    Article  CAS  Google Scholar 

  32. Saranya K, Rameez MD, Subramania A. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—an overview. Eur Polym J. 2015;66:207–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vietnam National Foundation for Science and Technology Development [Grant Code NAFOSTED 104.02-2017.20].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thu Ha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Tran, T.T., Kawahara, S. et al. Preparation of polyaniline nanomatrix formed in natural rubber. Polym J 52, 1357–1365 (2020). https://doi.org/10.1038/s41428-020-00403-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00403-9

This article is cited by

Search

Quick links