Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Ageing, oxidative stress and cancer: paradigms in parallax

Abstract

Two paradigms central to geroscience research are that aging is associated with increased oxidative stress and increased cancer risk. Therefore, it could be deduced that cancers arising with ageing will show evidence of increased oxidative stress. Recent studies of gene expression in age-controlled breast cancer cases indicate that this deduction is false, posing parallax views of these two paradigms, and highlighting the unanswered question: does ageing cause or simply permit cancer development?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways that are shared by oxidatively stressed and early-onset breast cancers.
Figure 2: Signalling pathways in oxidatively stressed and early onset breast cancers.

Similar content being viewed by others

References

  1. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed Central  Google Scholar 

  2. Muller, F. L., Lustgarten, M. S., Jang, Y., Richardson, A. & Van Remmen, H. Trends in oxidative aging theories. Free Radic. Biol. Med. 43, 477–503 (2007).

    Article  CAS  Google Scholar 

  3. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  Google Scholar 

  4. Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508 (2000).

    Article  CAS  Google Scholar 

  5. Krishnan, K. J., Greaves, L. C., Reeve, A. K. & Turnbull, D. The ageing mitochondrial genome. Nucleic Acids Res. 35, 7399–7405 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  6. Gruber, J., Schaffer, S. & Halliwell, B. The mitochondrial free radical theory of ageing — where do we stand? Front Biosci. 13, 6554–6479 (2008).

    Article  CAS  Google Scholar 

  7. Vijg, J. & Campisi, J. Puzzles, promises and a cure for ageing. Nature 454, 1065–1071 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  8. Edwards, B. et al. Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94, 2766–2792 (2002).

    Article  Google Scholar 

  9. Thun, M. & Jemal, A. Cancer Epidemiology (BC Decker, Hamilton, 2006).

    Google Scholar 

  10. Ershler, W. B. & Longo, D. L. Aging and cancer: issues of basic and clinical science. J. Natl Cancer Inst. 89, 1489–1497 (1997).

    Article  CAS  Google Scholar 

  11. Balducci, L. & Ershler, W. B. Cancer and ageing: a nexus at several levels. Nature Rev. Cancer 5, 655–662 (2005).

    Article  CAS  Google Scholar 

  12. Benz, C. C., Campisi, J., Cohen, H. J., Ershler, W.B. & Irminger-Finger, I. Meeting report: translational research at the aging and cancer interface. Cancer Res. 67, 4560–4563 (2007).

    Article  CAS  Google Scholar 

  13. Pawelec, G. & Solana, R. Are cancer and aging different sides of the same coin? Conference on cancer and ageing. EMBO Rep. 9, 234–238 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  14. Geigl, J. B. et al. Analysis of gene expression patterns and chromosomal changes associated with aging. Cancer Res. 64, 8550–8557 (2004).

    Article  CAS  Google Scholar 

  15. Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. Science 287, 2486–2492 (2000).

    Article  CAS  Google Scholar 

  16. Issa, J. P. Aging, DNA methylation and cancer. Crit. Rev. Oncol. Hematol. 32, 31–43 (1999).

    Article  CAS  Google Scholar 

  17. Richardson, B. Impact of aging on DNA methylation. Ageing Res. Rev. 2, 245–261 (2003).

    Article  CAS  Google Scholar 

  18. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  CAS  Google Scholar 

  19. Yau, C. et al. Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Res. 9, R59 (2007).

    Article  PubMed Central  Google Scholar 

  20. Benz, C. C. Impact of aging on the biology of breast cancer. Crit. Rev. Oncol. Hematol. 66, 65–74 (2008).

    Article  Google Scholar 

  21. Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J. 401, 1–11 (2007).

    Article  CAS  Google Scholar 

  22. Lander, H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118–124 (1997).

    Article  CAS  Google Scholar 

  23. Felty, Q., Singh, K. P. & Roy, D. Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24, 4883–4893 (2005).

    Article  CAS  Google Scholar 

  24. Oberley, T. D., Allen, R. G., Schultz, J. L. & Lauchner, L. J. Antioxidant enzymes and steroid-induced proliferation of kidney tubular cells. Free Radic. Biol. Med. 10, 79–83 (1991).

    Article  CAS  Google Scholar 

  25. Patel, M. M. & Bhat, H.K. Differential oxidant potential of carcinogenic and weakly carcinogenic estrogens: Involvement of metabolic activation and cytochrome P450. J. Biochem. Mol. Toxicol. 18, 37–42 (2004).

    Article  CAS  Google Scholar 

  26. Bhat, H. K., Calaf, G., Hei, T. K., Loya, T. & Vadgama, J. V. Critical role of oxidative stress in estrogen-induced carcinogenesis. Proc. Natl Acad. Sci. USA 100, 3913–3918 (2003).

    Article  CAS  Google Scholar 

  27. Dairkee, S. H. et al. Oxidative stress pathways highlighted in tumor cell immortalization: association with breast cancer outcome. Oncogene 26, 6269–6279 (2007).

    Article  CAS  Google Scholar 

  28. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  Google Scholar 

  29. Moghaddam, A. et al. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc. Natl Acad. Sci. USA 92, 998–1002 (1995).

    Article  CAS  Google Scholar 

  30. Sipe, H. J. Jr, Jordan, S. J., Hanna, P. M. & Mason, R. P. The metabolism of 17β-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis 15, 2637–2643 (1994).

    Article  CAS  Google Scholar 

  31. Blackburn, R. V. et al. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic. Biol. Med. 26, 419–430 (1999).

    Article  CAS  Google Scholar 

  32. Li, C. & Jackson, R. M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 282, C227–C241 (2002).

  33. Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol. Cancer Ther. 1, 1273–1281 (2002).

    CAS  PubMed  Google Scholar 

  34. Grimshaw, M. J., Wilson, J. L. & Balkwill, F. R. Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur. J. Immunol. 32, 2393–2400 (2002).

    Article  CAS  Google Scholar 

  35. Liang, X. et al. Oxidant stress impaired DNA-binding of estrogen receptor from human breast cancer. Mol. Cell Endocrinol. 146, 151–161 (1998).

    Article  CAS  Google Scholar 

  36. Wu, X., Bishopric, N. H., Discher, D. J., Murphy, B. J. & Webster, K. A. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol. Cell Biol. 16, 1035–1046 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  37. Quong, J. et al. Age-dependent changes in breast cancer hormone receptors and oxidant stress markers. Breast Cancer Res. Treat. 76, 221–236 (2002).

    Article  CAS  Google Scholar 

  38. Scott, G. K., Kushner, P., Vigne, J. L. & Benz, C. C. Truncated forms of DNA-binding estrogen receptors in human breast cancer. J. Clin. Invest. 88, 700–706 (1991).

    Article  CAS  PubMed Central  Google Scholar 

  39. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40 (2006).

    Article  CAS  Google Scholar 

  40. Levin, E. R. Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol. Endocrinol. 17, 309–317 (2003).

    Article  CAS  Google Scholar 

  41. Kirkegaard, T. et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J. Pathol. 207, 139–146 (2005).

    Article  CAS  Google Scholar 

  42. Knowlden, J. M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 Cells. Endocrinology 144, 1032–1044 (2003).

    Article  CAS  Google Scholar 

  43. Nabha, S. M. et al. Upregulation of PKC-δ contributes to antiestrogen resistance in mammary tumor cells. Oncogene 24, 3166–3176 (2005).

    Article  CAS  Google Scholar 

  44. Gee, J. M. et al. Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr. Relat. Cancer 12, S99–S111 (2005).

    Article  CAS  Google Scholar 

  45. Oh, A. S. et al. Hyperactivation of MAPK induces loss of ERα expression in breast cancer cells. Mol. Endocrinol. 15, 1344–1359 (2001).

    CAS  PubMed  Google Scholar 

  46. Creighton, C. J. et al. Activation of mitogen-activated protein kinase in estrogen receptor a-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor α-negative human breast tumors. Cancer Res. 66, 3903–3911 (2006).

    Article  CAS  Google Scholar 

  47. Creighton, C. J. et al. Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors. Genome Biol. 7, R28 (2006).

    Article  PubMed Central  Google Scholar 

  48. Coser, K. R. et al. Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc. Natl Acad. Sci. USA 1000, 13994–13999 (2003).

    Article  Google Scholar 

  49. Lin, C. Y. et al. Discovery of estrogen receptor α target genes and response elements in breast tumor cells. Genome Biol. 5, R66 (2004).

    Article  PubMed Central  Google Scholar 

  50. Oh, D. S. et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J. Clin. Oncol. 24, 1656–1664 (2006).

    Article  CAS  Google Scholar 

  51. Vendrell, J. A. et al. Estrogen regulation in human breast cancer cells of new downstream gene targets involved in estrogen metabolism, cell proliferation and cell transformation. J. Mol. Endocrinol. 32, 397–414 (2004).

    Article  CAS  Google Scholar 

  52. Yau, C. & Benz, C. C. Genes responsive to both oxidant stress and loss of estrogen receptor (ER) function identify a poor prognosis group of ER-positive primary breast cancers. Breast Cancer Res. 10, R61 (2008).

    Article  PubMed Central  Google Scholar 

  53. Zhou, Y. et al. Enhanced NFkB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7, 59 (2007).

    Article  PubMed Central  Google Scholar 

  54. Zhou, Y. et al. Activation of nuclear factor κB (NFκB) identifies a high-risk subset of hormone-dependent breast cancers. Int. J. Biochem. Cell Biol. 37, 1130–1144 (2005).

    Article  CAS  Google Scholar 

  55. Harding, C., Pompei, F., Lee, E. E. & Wilson, R. Cancer suppression at old age. Cancer Res. 68, 4465–4478 (2008).

    Article  CAS  Google Scholar 

  56. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  57. Zhang, H., Ramanathan, Y., Soteropoulos, P., Recce, M. L. & Toias, P. P. EZ-Retrieve: a web-server for batch retrieval of coordinate-specified human DNA sequences and underscoring putative transcription factor-binding sites. Nucleic Acid Res. 30, e121 (2002).

    Article  Google Scholar 

  58. Heinemeyer, T. et al. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acid Res. 26, 364–370 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by National Institutes of Health grants R01-AG020521, R01-CA71468, P01-AG025901, U54-RR024346/RL1-AG032113, P50-CA58207, and Hazel P. Munroe memorial funding to the Buck Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Benz.

Related links

Related links

DATABASES

National Cancer institute

breast cancer

FURTHER INFORMATION

C. C. Benz's homepage

TFSEARCH

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benz, C., Yau, C. Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8, 875–879 (2008). https://doi.org/10.1038/nrc2522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing