Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy

Abstract

Although PD-L1/PD-1 blockade therapy has been approved to treat many types of cancers, the majority of patients with solid tumors do not respond well, but the underlying reason remains unclear. Here, we studied ovarian cancer (OvCa), a tumor type generally resistant to current immunotherapies, to investigate PD-1-independent immunosuppression. We found that PD-L1 was not highly expressed in the tumor microenvironment (TME) of human OvCa. Instead, B7-H3, another checkpoint molecule, was highly expressed by both tumor cells and tumor-infiltrating antigen-presenting cellsĀ (APCs), which correlated with T-cell exhaustion in patients. Using ID8 OvCa mouse models, we found that B7-H3 expressed on tumor cells, but not host cells, had a dominant role in suppressing antitumor immunity. Therapeutically, B7-H3 blockade, but not PD-1 blockade, prolonged the survival of ID8 tumor-bearing mice. Collectively, our results demonstrate that tumor-expressed B7-H3 inhibits the function of CD8+ T cells and suggest that B7-H3 may be a target in patients who are not responsive to PD-L1/PD-1 inhibition, particularly OvCa patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994ā€“1004 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252ā€“264 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544ā€“548 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Callahan, M. K., Postow, M. A. & Wolchok, J. D. Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069ā€“1078 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Yi, M. et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 17, 129 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847ā€“856 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430ā€“1437 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. McDermott, D. F. et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J. Clin. Oncol. 34, 833ā€“842 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Song, M. et al. IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423ā€“428 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Fan, C. A., Reader, J. & Roque, D. M. Review of Immune therapies targeting ovarian cancer. Curr. Treat. Options Oncol. 19, 74 (2018).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203ā€“213 (2003).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Kandalaft, L. E., Powell, D. J. Jr., Singh, N. & Coukos, G. Immunotherapy for ovarian cancer: whatā€™s next? J. Clin. Oncol. 29, 925ā€“933 (2011).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015ā€“4022 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Hwang, W. T., Adams, S. F., Tahirovic, E., Hagemann, I. S. & Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol. 124, 192ā€“198 (2012).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Hamanishi, J. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104, 3360ā€“3365 (2007).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455ā€“2465 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Ventriglia, J. et al. Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives. Cancer Treat. Rev. 59, 109ā€“116 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Disis ML, P. M. et al. Avelumab (MSB0010718C; anti- PD-L1) in patients with recurrent/refractory ovarian cancer from the JAVELIN solid tumor phase ib trial: safety and clinical activity. J. Clin. Oncol. 34, 5533 (2016).

  19. Varga, A. et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028. Gynecol Oncol. 152, 243ā€“250 (2019).

  20. Guo, Z., Wang, H., Meng, F., Li, J. & Zhang, S. Combined trabectedin and anti-PD1 antibody produces a synergistic antitumor effect in a murine model of ovarian cancer. J. Transl. Med. 13, 247 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Guo, Z. et al. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLoS One 9, e89350 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Lu, L. et al. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J. Transl. Med. 12, 36 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Peng, J. et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-kappaB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75, 5034ā€“5045 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Chapoval, A. I. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. 2, 269ā€“274 (2001).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Sun, M. et al. Characterization of mouse and human B7-H3 genes. J. Immunol. 168, 6294ā€“6297 (2002).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Wang, J. et al. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J. Invest. Dermatol. 133, 2050ā€“2058 (2013).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Crispen, P. L. et al. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin. Cancer Res. 14, 5150ā€“5157 (2008).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Zang, X. et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol. 23, 1104ā€“1112 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Lee, Y. H. et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 27, 1034ā€“1045 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Mahnke, K. et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur. J. Immunol. 37, 2117ā€“2126 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Suh, W. K. et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol. 4, 899ā€“906 (2003).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Picarda, E., Ohaegbulam, K. C. & Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 22, 3425ā€“3431 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Zhang, J. et al. B7-H3 is related to tumor progression in ovarian cancer. Oncol. Rep. 38, 2426ā€“2434 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 805ā€“815 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Abiko, K. et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin. Cancer Res. 19, 1363ā€“1374 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Ling, V. et al. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics 82, 365ā€“377 (2003).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Prasad, D. V. et al. Murine B7-H3 is a negative regulator of T cells. J. Immunol. 173, 2500ā€“2506 (2004).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Kansy, B. A. et al. PD-1 status in CD8(+) T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res. 77, 6353ā€“6364 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Seaman, S. et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell. 31, 501ā€“515 e8 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Alsaab, H. O. et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 561 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Li, J. et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8(+) T cells. Immunity 48, 773ā€“86 e5 (2018).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Sun, Y. et al. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 53, 143ā€“151 (2006).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Dong, P., Xiong, Y., Yue, J., Hanley, S. J. B. & Watari, H. B7H3 as a promoter of metastasis and promising therapeutic target. Front. Oncol. 8, 264 (2018).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Li, G., Quan, Y., Che, F. & Wang, L. B7-H3 in tumors: friend or foe for tumor immunity? Cancer Chemother. Pharmacol. 81, 245ā€“253 (2018).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343, 84ā€“87 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors are grateful to Dr. Xueguang Zhang (Soochow University, China) and Jiajia Li (Fudan University Shanghai Cancer Center) for providing the mouse and human OvCa cell lines. This project was funded in part by the Key Program of the National Natural Science Foundation of China (81730039 & 81671460 to L.-P.J.), the National Key Research and Development Program of China (2017YFC1001401 to L.-P.J.), Beijing Municipal Science and Technology Projects (Z181100006318015 and Z181100001318007 to C.D.), Shanghai Municipal Medical and Health Discipline Construction Projects (2017ZZ02015 to L.-P.J.), and the National Basic Research Program of China (2015CB943300 to L.-P.J.).

Author information

Authors and Affiliations

Authors

Contributions

D.C., L.N., L.J. and C.D. conceived and designed the study. D.C., J.L., D.L., S.H., Q.Q., Q.S., S.X. and T.S. conducted the experiments. P.L. and N.L. supervised and collected the clinical specimens. D.C. and J.L. analyzed and interpreted the data. L.G. and L.J. provided key materials. D.C., L.N. and C.D. wrote and revised the paper. L.J. and C.D. supervised the study.

Corresponding authors

Correspondence to Ling Ni, Liping Jin or Chen Dong.

Ethics declarations

Competing interests

The authors have filed a patent application based on the current work.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Li, J., Liu, D. et al. Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cell Mol Immunol 17, 227ā€“236 (2020). https://doi.org/10.1038/s41423-019-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0305-2

Keywords

This article is cited by

Search

Quick links