Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4

Abstract

The ability to engineer a photoelectrode surface is pivotal for optimizing the properties of any photoelectrode used for solar fuel production. Altering crystal facets exposed on the surface of photoelectrodes has been a major strategy to modify their surface structure. However, there exist numerous ways to terminate the surface even for the same facet, which can considerably alter the photoelectrode properties. Here we report tightly integrated experimental and computational investigations of epitaxial BiVO4 photoelectrodes with vanadium- and bismuth-rich (010) facets. Our study demonstrates that even for the same facet the surface Bi:V ratio has a remarkable impact on the interfacial energetics and photoelectrochemical properties. We also elucidate the microscopic origins of how the surface composition can affect the photoelectrochemical properties. This study opens an unexplored path for understanding and engineering surface energetics via tuning the surface termination/composition of multinary oxide photoelectrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of epitaxial BiVO4 (010) electrodes.
Fig. 2: Experimental and simulated STM images of BiVO4 (010).
Fig. 3: Band alignments of BiVO4 (010).
Fig. 4: Calculated macroscopic of BiVO4 (010).
Fig. 5: Photoelectrochemical properties of epitaxial BiVO4 (010) electrodes.

Similar content being viewed by others

Data availability

The dataset generated and analysed in the current study are openly available on Qresp44 (Qresp.org) through the University of Chicago node; https://doi.org/10.6084/m9.figshare.13496997.

References

  1. Nozik, A. J. Photoelectrochemistry: applications to solar energy conversion. Ann. Rev. Phys. Chem. 29, 189–222 (1978).

    Article  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  Google Scholar 

  3. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  4. Sivula, K. & Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  Google Scholar 

  5. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  6. Smith, W. A., Sharp, I. D., Strandwitz, N. C. & Bisquert, J. Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015).

    Article  Google Scholar 

  7. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  Google Scholar 

  8. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

    Article  Google Scholar 

  9. Nellist, M. R. et al. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 3, 46–52 (2018).

    Article  Google Scholar 

  10. Li, D. et al. Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation. ACS Energy Lett. 4, 825–831 (2019).

    Article  Google Scholar 

  11. Hu, J., Chen, W., Zhao, X., Su, H. & Chen, Z. Anisotropic electronic characteristics, adsorption, and stability of low-index BiVO4 surfaces for photoelectrochemical applications. ACS Appl. Mater. Interfaces 10, 5475–5484 (2018).

    Article  Google Scholar 

  12. Park, Y., McDonald, K. J. & Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  Google Scholar 

  13. Lee, D. K. & Choi, K.-S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2018).

    Article  Google Scholar 

  14. Kuang, Y. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2, 16191 (2017).

    Article  Google Scholar 

  15. Kim, J. H. et al. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016).

    Article  Google Scholar 

  16. Zhang, W. et al. Anomalous conductivity tailored by domain-boundary transport in crystalline bismuth vanadate photoanodes. Chem. Mater. 30, 1677–1685 (2018).

    Article  Google Scholar 

  17. Brongersma, H. H., Draxler, M., de Ridder, M. & Bauer, P. Surface composition analysis by low-energy ion scattering. Surf. Sci. Rep. 62, 63–109 (2007).

    Article  Google Scholar 

  18. Cushman, C. V. et al. Low energy ion scattering (LEIS). A practical introduction to its theory, instrumentation, and applications. Anal. Methods 8, 3419–3439 (2016).

    Article  Google Scholar 

  19. Purbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  20. Wang, W. et al. The role of surface oxygen vacancies in BiVO4. Chem. Mater. 32, 2899–2909 (2020).

    Article  Google Scholar 

  21. Favaro, M. et al. Chemical, structural, and electronic characterization of the (010) surface of single crystalline bismuth vanadate. J. Phys. Chem. C. 123, 8347–8359 (2019).

    Article  Google Scholar 

  22. Seo, H., Ping, Y. & Galli, G. Role of point defects in enhancing the conductivity of BiVO4. Chem. Mater. 30, 7793–7802 (2018).

    Article  Google Scholar 

  23. Bjaalie, L., Himmetoglu, B., Weston, L., Janotti, A. & Van De Walle, C. G. Oxide interfaces for novel electronic applications. N. J. Phys. 16, 025005 (2014).

    Article  Google Scholar 

  24. Balderschi, A., Baroni, S. & Resta, R. Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAs/AlAs. Phys. Rev. Lett. 61, 734–737 (1988).

    Article  Google Scholar 

  25. Kweon, K. E., Hwang, G. S., Kim, J., Kim, S. & Kim, S. Electron small polarons and their transport in bismuth vanadate: a first principles study. Phys. Chem. Chem. Phys. 17, 256–260 (2015).

    Article  Google Scholar 

  26. Wiktor, J., Ambrosio, F. & Pasquarello, A. Role of polarons in water splitting: the case of BiVO4. ACS Energy Lett. 3, 1693–1697 (2018).

    Article  Google Scholar 

  27. Wiktor, J. & Pasquarello, A. Electron and Hole Polarons at the BiVO4–water interface. ACS Appl. Mater. Interfaces 11, 18423–18426 (2019).

    Article  Google Scholar 

  28. Reber, J. F. & Meier, K. Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88, 5903–5913 (1984).

    Article  Google Scholar 

  29. Govindaraju, G. V., Wheeler, G. P., Lee, D. & Choi, K.-S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater. 29, 355–370 (2017).

    Article  Google Scholar 

  30. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  31. Swartzfager, D. G. Sensitivity factors for surface analysis by ion scattering spectroscopy. Anal. Chem. 56, 55–58 (1984).

    Article  Google Scholar 

  32. Smith, D. P. Scattering of low-energy noble gas ions from metal surfaces. J. Appl. Phys. 38, 340–347 (1967).

    Article  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  34. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  Google Scholar 

  35. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  36. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  Google Scholar 

  37. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    Article  MATH  Google Scholar 

  38. Cococcioni, M. & De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  39. Sun, W. & Ceder, G. Efficient creation and convergence of surface slabs. Surf. Sci. 617, 53–59 (2013).

    Article  Google Scholar 

  40. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  41. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  42. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  Google Scholar 

  43. Zhao, Z., Li, Z. & Zou, Z. Structure and energetics of low-index stoichiometric monoclinic clinobisvanite BiVO4 surfaces. RSC Adv. 1, 874–883 (2011).

    Article  Google Scholar 

  44. Govoni, M. et al. Qresp, a tool for curating, discovering, and exploring reproducible scientific papers. Sci. Data 6, 190002 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) under grant no. CHE-1764399. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. This research also used computational resources of the University of Chicago’s Research Computing Center. This research additionally used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract no. DE-AC02-05CH11231. The authors would like to thank R. Farber for helpful discussions in processing STM images.

Author information

Authors and Affiliations

Authors

Contributions

K.-S.C., G.G. and M.L. supervised the combined experimental and computational investigations. C.Z. prepared epitaxial BiVO4 and performed STM imaging and LEIS analysis of BiVO4 together with X.T. under the supervision of M.L. D.L. performed all other experimental studies of BiVO4 under the supervision of K.-S.C. W.W. performed all computational calculations under the supervision of G.G. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Mingzhao Liu, Giulia Galli or Kyoung-Shin Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Fatwa Abdi, Ian Sharp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Wang, W., Zhou, C. et al. The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat Energy 6, 287–294 (2021). https://doi.org/10.1038/s41560-021-00777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00777-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing