Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AKT-mediated regulation of chromatin ubiquitylation and tumorigenesis through Mel18 phosphorylation

Abstract

Polycomb repressor complex 1 (PRC1) is linked to the regulation of gene expression and histone ubiquitylation conformation, which contributes to carcinogenesis. However, the upstream regulators of PRC1 biogenesis machinery remain obscure. Here, we report that the polycomb group-related mammalian gene Mel18 is a target of the protein kinase AKT. AKT phosphorylates Mel18 at T334 to disrupt the interaction between Mel18 and other PRC1 members, leading to attenuated PRC1-dependent ubiquitylation of histone H2A at Lys119. As such, PRC1 target genes, many of which are known oncogenes, are derepressed upon T334-Mel18 phosphorylation, which promotes malignant behaviours, including cell proliferation, tumour formation, migration and invasion, bone and brain metastatic lesion formation. Notably, a positive correlation between AKT activity and pT334-Mel18 is observed, and prognostic models based on p-AKT and pT334-Mel18 that predicted overall survival and distant metastasis-free survival in breast cancer patients are established. These findings have implications for understanding the role of AKT and its associated proteins in chromatin ubiquitylation, and also indicate the AKT-Mel18-H2AK119ub axis as a novel prognostic biomarker and therapeutic target for cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AKT negatively regulates ubiquitylation of histone H2A at Lys119.
Fig. 2: Mel18 interacts with AKT.
Fig. 3: Identification of Mel18 as a downstream phosphorylation substrate of AKT.
Fig. 4: AKT-mediated phosphorylation of Mel18 at T334 promotes breast cancer cells progression.
Fig. 5: Phosphorylation of Mel18 at T334 by AKT1 disrupts PRC1 complex and suppresses H2AK119 ubiquitylation.
Fig. 6: P-Mel18 is correlated with p-AKT in clinical breast cancer samples.
Fig. 7: Proposed model of phosphorylation of Mel18 by AKT suppresses H2AK119ub and promotes oncogenic function.

Similar content being viewed by others

Data availability

The correlation between the protein levels of AKT1 and Pcgf paralogues was performed by using the publicly available mass spectrometry-based proteomics data from cBioPortal (http://www.cbioportal.org/, TCGA Firehose legacy). All the ChIP-seq databases generated in this paper have been deposited in the Genome Sequence Archive (GSA, https://bigd.big.ac.cn/gsa/) under the accession number CRA002474, CRA003431 and CRA003414.

References

  1. Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol. 2019;20:245.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 2016;63:34–48.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Jones AE, Wu W, Kim J, Kang Y, Bi X, et al. Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing. Proc Natl Acad Sci U S A. 2017;114:E7949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in polycomb silencing. Nature. 2004;431:873–8.

    Article  CAS  PubMed  Google Scholar 

  5. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 2010;465:243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS, et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature. 2014;516:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vidal M, Starowicz K. Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol. 2017;48:12–31.

    Article  CAS  PubMed  Google Scholar 

  10. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45:344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujisaki S, Ninomiya Y, Ishihara H, Miyazaki M, Kanno R, Asahara T, et al. Dimerization of the polycomb-group protein Mel-18 is regulated by PKC phosphorylation. Biochem Biophys Res Commun. 2003;300:135–40.

    Article  CAS  PubMed  Google Scholar 

  12. Elderkin S, Maertens GN, Endoh M, Mallery DL, Morrice N, Koseki H, et al. A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol Cell. 2007;28:107–20.

    Article  CAS  PubMed  Google Scholar 

  13. Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S, et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol. 2013;15:353–62.

    Article  CAS  PubMed  Google Scholar 

  14. Kanno M, Hasegawa M, Ishida A, Isono K, Taniguchi M. mel-18, a polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J. 1995;14:5672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chun T, Rho SB, Byun HJ, Lee JY, Kong G. The polycomb group gene product Mel-18 interacts with cyclin D2 and modulates its activity. FEBS Lett. 2005;579:5275–80.

    Article  CAS  PubMed  Google Scholar 

  16. Guo WJ, Datta S, Band V, Dimri GP. Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell. 2007;18:536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park JH, Lee JY, Shin DH, Jang KS, Kim HJ, Kong G. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1alpha mediated by the PTEN/PI3K/Akt pathway. Oncogene. 2011;30:4578–89.

    Article  CAS  PubMed  Google Scholar 

  18. Won HY, Lee JY, Shin DH, Park JH, Nam JS, Kim HC, et al. Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J: Off Publ Fed Am Soc Exp Biol. 2012;26:5002–13.

    Article  CAS  Google Scholar 

  19. Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol. 2004;32:571–8.

    Article  CAS  PubMed  Google Scholar 

  20. Akasaka T, Tsuji K, Kawahira H, Kanno M, Harigaya K, Hu L, et al. The role of mel-18, a mammalian polycomb group gene, during IL-7-dependent proliferation of lymphocyte precursors. Immunity. 1997;7:135–46.

    Article  CAS  PubMed  Google Scholar 

  21. Kimura M, Koseki Y, Yamashita M, Watanabe N, Shimizu C, Katsumoto T, et al. Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity. 2001;15:275–87.

    Article  CAS  PubMed  Google Scholar 

  22. Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, et al. Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use (Review). Int J Oncol. 2016;48:869–85.

    Article  CAS  PubMed  Google Scholar 

  23. Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, et al. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca(2+) levels and tumor growth. EMBO J. 2019;38:e99435.

    Article  PubMed  Google Scholar 

  24. Li Q, Zhao Q, Zhang J, Zhou L, Zhang W, Chua B, et al. The protein phosphatase 1 complex is a direct target of AKT that links insulin signaling to hepatic glycogen deposition. Cell Rep. 2019;28:3406–22.e7.

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh JC, Seo JH, Agarwal E, Wang Y, Kossenkov AV, Tang HY, et al. Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene. 2019;38:6926–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao SY, Kuo IY, Chen YT, Liao PC, Liu YF, Wu HY, et al. AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene. 2019;38:6723–36.

    Article  CAS  PubMed  Google Scholar 

  27. Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139–55.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamburri S, Lavarone E, Fernandez-Perez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 Mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77:840–56.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lempiainen JK, Manjur A, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene. 2020;39:2391–407.

    Article  CAS  PubMed  Google Scholar 

  30. Morey L, Santanach A, Blanco E, Aloia L, Nora EP, Bruneau BG, et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell. 2015;17:300–15.

    Article  CAS  PubMed  Google Scholar 

  31. Uzawa K, Kasamatsu A, Baba T, Usukura K, Saito Y, Sakuma K, et al. Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells. Cancer Med. 2013;2:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pietila M, Sahgal P, Peuhu E, Jantti NZ, Paatero I, Narva E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meng X, Jin-Cheng G, Jue Z, Quan-Fu M, Bin Y, Xu-Feng W. Protein-coding genes, long non-coding RNAs combined with microRNAs as a novel clinical multi-dimension transcriptome signature to predict prognosis in ovarian cancer. Oncotarget. 2017;8:72847–59.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10.

    Article  CAS  PubMed  Google Scholar 

  35. Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell. 2018;69:279–91.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo BH, Zhang X, Zhang HZ, Lin HL, Feng Y, Shao JY, et al. Low expression of Mel-18 predicts poor prognosis in patients with breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2010;21:2361–9.

    Article  Google Scholar 

  37. Wang W, Lin T, Huang J, Hu W, Xu K, Liu J. Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol. 2011;29:244–51.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF, et al. BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer. 2010;9:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, et al. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21:78.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 2018;53:2319–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Zahrani KN, Abou-Hamad J, Cook DP, Pryce BR, Hodgins JJ, Labreche C, et al. Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers. Oncogene. 2020;39:4592–602.

    Article  CAS  PubMed  Google Scholar 

  42. Brown JS, Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 2017;172:101–15.

    Article  CAS  PubMed  Google Scholar 

  43. Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov. 2010;9:843–56.

    Article  CAS  PubMed  Google Scholar 

  44. Li ZL, Zhang HL, Huang Y, Huang JH, Sun P, Zhou NN, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng R, Huang J-H, Wang Y, Zhou L-H, Wang Z-F, Hu B-X, et al. Disruption of super-enhancer-driven tumor suppressor gene RCAN1.4 expression promotes the malignancy of breast carcinoma. Mol Cancer. 2020;19:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH. et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy. 2020;7:1–19. https://doi.org/10.1080/15548627.2020.1850609. Online ahead of print.

    Article  CAS  Google Scholar 

  47. Li X, Wu XQ, Deng R, Li DD, Tang J, Chen WD, et al. CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation. Nat Commun. 2017;8:1159.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mai J, Zhong ZY, Guo GF, Chen XX, Xiang YQ, Li X, et al. Polo-Like Kinase 1 phosphorylates and stabilizes KLF4 to promote tumorigenesis in nasopharyngeal carcinoma. Theranostics. 2019;9:3541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Wei-Guo Zhu (Shenzhen University) for providing Flag-H2A, Flag-H2B, Flag-H3 and Flag-H4 plasmids.

Funding

This study was supported by the Natural Science Foundation of China (81772624, 81572605, 81772835, 81972481, 81630079, and 81972855), the Science and Technology Project of Guangzhou (201803010007), China Postdoctoral Science Foundation (2020M683107) and the Natural Science Foundation of Guangdong Province (2019A1515011209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Feng Zhu or Rong Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, J., Peng, XD., Tang, J. et al. AKT-mediated regulation of chromatin ubiquitylation and tumorigenesis through Mel18 phosphorylation. Oncogene 40, 2422–2436 (2021). https://doi.org/10.1038/s41388-020-01602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01602-7

This article is cited by

Search

Quick links