Skip to main content
Erschienen in: Journal of Materials Science 22/2017

11.08.2017 | Computation

Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system

verfasst von: Sabriye Acikgoz, Hasan Yungevis, Emin Özünal, Ayşegül Şahin

Erschienen in: Journal of Materials Science | Ausgabe 22/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Germanium nanostructures are prepared by electrochemical etching of n-type Sb-doped (100) oriented germanium (Ge) substrates with resistivity of 0.01 Ω cm. Ge substrates are etched in an electrochemical double cell containing hydrofluoric acid and ethanol solution at room temperature. Although the use of illumination source is essential for etching of an n-type semiconductor material, the influence of illumination source type on the germanium surface morphology has not yet been investigated. In this work, the illumination effect is studied by halogen lamp, white LED, 470- and 405-nm pulsed diode laser. It is demonstrated that different Ge surface morphologies such as nanocone, nanorod, nanoplate and nanopyramid are obtained using different illumination source. The current density, anodization time and pulsed laser power density effects on Ge nanopyramid are investigated in order to optimize anodization conditions. The most uniform and continuous Ge nanopyramid array is obtained at the current density of 30 mA/cm2 for 45 min under cathode side illumination with 470-nm pulsed diode laser. It is observed that the nanostructured Ge surfaces exhibit a broad photoluminescence band between 400 and 650 nm. Time-resolved fluorescence spectroscopy studies of electron transfer process between BODIPY dye and Ge nanostructures are reported. The obtained fluorescence lifetime data are analyzed in the light of the Marcus electron transfer theory to determine the conduction band energy level of nanostructured germanium substrates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oh J, Yuan HC, Branz HM (2012) An 18.2% efficient black silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748CrossRef Oh J, Yuan HC, Branz HM (2012) An 18.2% efficient black silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748CrossRef
2.
Zurück zum Zitat Sainato M, Strambini LM, Rella S, Mazzotta E, Barillaro G (2015) Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal assisted etching. ACS Appl Mater Interfaces 7:7136–7145CrossRef Sainato M, Strambini LM, Rella S, Mazzotta E, Barillaro G (2015) Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal assisted etching. ACS Appl Mater Interfaces 7:7136–7145CrossRef
3.
Zurück zum Zitat Chiappini C, Rosa ED, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E (2015) Biodegradable silicon nanoneedles delivering nucleic acids intra cellularly induce localized in vivo neovascularization. Nat Mater 14:532–539CrossRef Chiappini C, Rosa ED, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E (2015) Biodegradable silicon nanoneedles delivering nucleic acids intra cellularly induce localized in vivo neovascularization. Nat Mater 14:532–539CrossRef
4.
Zurück zum Zitat Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ (2002) Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater 1:39–41CrossRef Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ (2002) Biomolecular screening with encoded porous-silicon photonic crystals. Nat Mater 1:39–41CrossRef
5.
Zurück zum Zitat Ng WL, Lourenço MA, Gwilliam RM, Ledain S, Shao G, Homewood KP (2001) An efficient room-temperature silicon-based light-emitting diode. Nature 410:192–194CrossRef Ng WL, Lourenço MA, Gwilliam RM, Ledain S, Shao G, Homewood KP (2001) An efficient room-temperature silicon-based light-emitting diode. Nature 410:192–194CrossRef
6.
Zurück zum Zitat Wang W, Favors Z, Ionescu R, Ye R, Bay HH, Ozkan M, Ozkan CS (2015) Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Sci Rep 5:8781–8786CrossRef Wang W, Favors Z, Ionescu R, Ye R, Bay HH, Ozkan M, Ozkan CS (2015) Monodisperse porous silicon spheres as anode materials for lithium ion batteries. Sci Rep 5:8781–8786CrossRef
7.
Zurück zum Zitat Kumar RR, Rao KN, Phani AR (2011) Growth and characterization of germanium nanowires on a flexible aluminum substrate by electron beam evaporation. Appl Nanosci 1(4):211–217CrossRef Kumar RR, Rao KN, Phani AR (2011) Growth and characterization of germanium nanowires on a flexible aluminum substrate by electron beam evaporation. Appl Nanosci 1(4):211–217CrossRef
8.
Zurück zum Zitat Kolibal M, Matlocha T, Vystavel T, Sikola T (2011) Low energy focused ion beam milling of silicon and germanium nanostructures. Nanotechnology 22:105304–105311CrossRef Kolibal M, Matlocha T, Vystavel T, Sikola T (2011) Low energy focused ion beam milling of silicon and germanium nanostructures. Nanotechnology 22:105304–105311CrossRef
9.
Zurück zum Zitat Pchelyakova OP, Bolkhovityanova YB, Dvurechenskiia AV, Nikiforova AI, Yakimova AI, Voigtlander B (2015) Molecular beam epitaxy of silicon–germanium nanostructures. Thin Solid Films 367:75–84CrossRef Pchelyakova OP, Bolkhovityanova YB, Dvurechenskiia AV, Nikiforova AI, Yakimova AI, Voigtlander B (2015) Molecular beam epitaxy of silicon–germanium nanostructures. Thin Solid Films 367:75–84CrossRef
10.
Zurück zum Zitat Dailey JW, Taraci J, Clement T, Smith DJ, Drucker J, Picraux ST (2004) Vapor liquid solid growth of germanium nanostructures on silicon. J Appl Phys 96:7556–7567CrossRef Dailey JW, Taraci J, Clement T, Smith DJ, Drucker J, Picraux ST (2004) Vapor liquid solid growth of germanium nanostructures on silicon. J Appl Phys 96:7556–7567CrossRef
11.
Zurück zum Zitat Seo MA, Kim DS, Kim HS, Choi DS, Jeoung SC (2006) Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases. Opt Express 14(11):4908–4914CrossRef Seo MA, Kim DS, Kim HS, Choi DS, Jeoung SC (2006) Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases. Opt Express 14(11):4908–4914CrossRef
12.
Zurück zum Zitat Flamand G, Poortmans J, Dessein K (2005) Formation of porous Ge using HF-based electrolytes. Phys Status Solidi (c) 2:3243–3247CrossRef Flamand G, Poortmans J, Dessein K (2005) Formation of porous Ge using HF-based electrolytes. Phys Status Solidi (c) 2:3243–3247CrossRef
13.
Zurück zum Zitat Fang C, Föll H, Carstensen J (2006) Electrochemical pore etching in germanium. J Electroanal Chem 589:259–288CrossRef Fang C, Föll H, Carstensen J (2006) Electrochemical pore etching in germanium. J Electroanal Chem 589:259–288CrossRef
14.
Zurück zum Zitat Kartopu G, Sapelkin AV, Karavanskii VA, Serincan U, Turan R (2008) Structural and optical properties of porous nanocrystalline Ge. J Appl Phys 103:113518–113524CrossRef Kartopu G, Sapelkin AV, Karavanskii VA, Serincan U, Turan R (2008) Structural and optical properties of porous nanocrystalline Ge. J Appl Phys 103:113518–113524CrossRef
15.
Zurück zum Zitat Rojas EG, Hensen J, Carstensen J, Föll H, Brendel R (2011) Porous germanium layers by electrochemical etching for layer transfer processes of high-efficiency multi-junction solar cells. ECS Trans 33(17):95–102CrossRef Rojas EG, Hensen J, Carstensen J, Föll H, Brendel R (2011) Porous germanium layers by electrochemical etching for layer transfer processes of high-efficiency multi-junction solar cells. ECS Trans 33(17):95–102CrossRef
16.
Zurück zum Zitat Tutashkonkoa S, Boucherif A, Nychyporuk T, Kaminski-Cachopo A, Arès R, Lemiti M, Aimez V (2013) Mesoporous germanium formed by bipolar electrochemical etching. Electrochim Acta 88:256–262CrossRef Tutashkonkoa S, Boucherif A, Nychyporuk T, Kaminski-Cachopo A, Arès R, Lemiti M, Aimez V (2013) Mesoporous germanium formed by bipolar electrochemical etching. Electrochim Acta 88:256–262CrossRef
17.
Zurück zum Zitat Tutashkonko S, Alekseev S, Nychyporuk T (2015) Nanoscale morphology tuning of mesoporous Ge: electrochemical mechanisms. Electrochim Acta 180:545–554CrossRef Tutashkonko S, Alekseev S, Nychyporuk T (2015) Nanoscale morphology tuning of mesoporous Ge: electrochemical mechanisms. Electrochim Acta 180:545–554CrossRef
18.
Zurück zum Zitat Liang D, Huo Y, Kang Y, Wang KX, Gu A, Tan M, Yu Z, Li S, Jia J, Bao X, Wang S, Yao Y, Wong HSP, Fan S, Cui Y, Harris JS (2012) Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays. Adv Energy Mater 2:1254–1260CrossRef Liang D, Huo Y, Kang Y, Wang KX, Gu A, Tan M, Yu Z, Li S, Jia J, Bao X, Wang S, Yao Y, Wong HSP, Fan S, Cui Y, Harris JS (2012) Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays. Adv Energy Mater 2:1254–1260CrossRef
19.
Zurück zum Zitat Han Q, Fu Y, Jin L, Zhao J, Xu Z, Fang F, Gao J, Yu W (2015) Germanium nanopyramid arrays showing near 100% absorption in the visible regime. Nano Res 8(7):2216–2222CrossRef Han Q, Fu Y, Jin L, Zhao J, Xu Z, Fang F, Gao J, Yu W (2015) Germanium nanopyramid arrays showing near 100% absorption in the visible regime. Nano Res 8(7):2216–2222CrossRef
20.
Zurück zum Zitat Riedel M, Müller B, Wintermantel E (2001) Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22:2307–2316CrossRef Riedel M, Müller B, Wintermantel E (2001) Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22:2307–2316CrossRef
21.
Zurück zum Zitat Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, He D (2015) Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2):1858–1867CrossRef Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, He D (2015) Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2):1858–1867CrossRef
22.
Zurück zum Zitat Hwang J, Jo C, Kim MG, Chun J, Lim E, Kim S, Jeong S, Kim Y, Lee J (2015) Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 9(5):5299–5309CrossRef Hwang J, Jo C, Kim MG, Chun J, Lim E, Kim S, Jeong S, Kim Y, Lee J (2015) Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 9(5):5299–5309CrossRef
23.
Zurück zum Zitat Gao YQ, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J Chem Phys 113:6351–6359CrossRef Gao YQ, Marcus RA (2000) On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J Chem Phys 113:6351–6359CrossRef
24.
Zurück zum Zitat Williams RM, Koeberg M, Lawson JM, An YZ, Rubin Y, Paddon-Row MN, Verhoeven JW (1996) Photoinduced electron transfer to C60 across extended 3- and 11-bond hydrocarbon bridges: creation of a long-lived charge-separated state. J Org Chem 61:5055–5062CrossRef Williams RM, Koeberg M, Lawson JM, An YZ, Rubin Y, Paddon-Row MN, Verhoeven JW (1996) Photoinduced electron transfer to C60 across extended 3- and 11-bond hydrocarbon bridges: creation of a long-lived charge-separated state. J Org Chem 61:5055–5062CrossRef
25.
Zurück zum Zitat Darius K, Michael SF, Harry BG, Jay RW (2001) Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392–403 Darius K, Michael SF, Harry BG, Jay RW (2001) Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392–403
26.
Zurück zum Zitat Vyas AD, Rana VA, Gadani DH (2011) Dielectric properties of mixtures of some rigid polar molecules with some primary. Indian J Pure Appl Phys 49:277–283 Vyas AD, Rana VA, Gadani DH (2011) Dielectric properties of mixtures of some rigid polar molecules with some primary. Indian J Pure Appl Phys 49:277–283
27.
Zurück zum Zitat Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271CrossRef Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271CrossRef
28.
Zurück zum Zitat Nepomnyashchii AB, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Acc Chem Res 45(11):1844–1853CrossRef Nepomnyashchii AB, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Acc Chem Res 45(11):1844–1853CrossRef
29.
Zurück zum Zitat Porter LA, Choi HC, Ribbe AE, Buriak JM (2002) Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett 2:1067–1071CrossRef Porter LA, Choi HC, Ribbe AE, Buriak JM (2002) Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett 2:1067–1071CrossRef
30.
Zurück zum Zitat Tvrdy K, Frantsuzovc PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34CrossRef Tvrdy K, Frantsuzovc PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34CrossRef
Metadaten
Titel
Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system
verfasst von
Sabriye Acikgoz
Hasan Yungevis
Emin Özünal
Ayşegül Şahin
Publikationsdatum
11.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1434-6

Weitere Artikel der Ausgabe 22/2017

Journal of Materials Science 22/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.