Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibiofilm activity of Fmoc-phenylalanine against Gram-positive and Gram-negative bacterial biofilms

Abstract

Biofilm associated infections are the major contributor of mortality, morbidity and financial burden in patients with a bacterial infection. About 65% of all bacterial infections are associated with the information of bacterial biofilms. Bacterial biofilms not only reduce the efficacy of antibacterial treatment but also increases the threat of developing antibacterial resistance. Recently, our group has discovered the antibacterial activity of Fmoc-phenylalanine (Fmoc-F) and other Fmoc-amino acids (Fmoc-AA). Fmoc-F and other Fmoc-AA showed antibacterial activity due to their surfactant properties. Surfactants are known to eradicate biofilm and enhance antimicrobial activity in biofilm. Thus, in the present study, we evaluated the anti-biofilm activity of Fmoc-F against clinically relevant bacteria. We found that Fmoc-F not only inhibits the biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa, but also eradicates the already formed biofilms over the surface. Further, Fmoc-F coated glass surface resists S. aureus and P. aeruginosa biofilm formation and attachment, when biofilm is grown over the surface. The mechanistic investigation suggests that Fmoc-F reduces the extracellular matrix (ECM) components such as proteins, carbohydrates and eDNA in the biofilm and affect its stability via direct interactions with ECM components and/ or indirectly through reducing bacterial cell population. Finally, we showed that Fmoc-F treatment in combination with vancomycin and ampicillin synergistically inhibit biofilm formation. Overall, the study demonstrates the potential application of Fmoc-F and other Fmoc-AA molecules individually as well as in combination as anti-biofilm coating material for treating biofilm associated infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang W, et al. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol. 2015;5:40.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Micro Cell Fact. 2016;15:165.

    Article  Google Scholar 

  3. Jamal M, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81:7–11.

    Article  PubMed  Google Scholar 

  4. Aparna MS, Yadav S. Biofilms: microbes and disease. Braz J Infect Dis. 2008;12:526–30.

    Article  CAS  PubMed  Google Scholar 

  5. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018;4:e01067.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Micro. 2017;83:e02508–16.

    Google Scholar 

  7. Kvist M, Hancock V, Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Micro. 2008;74:7376–82.

    Article  CAS  Google Scholar 

  8. Zhang L, Mah T-F. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol. 2008;190:4447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019;5:e02192.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kalpana BJ, Aarthy S, Pandian SK. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778–94.

    Article  CAS  PubMed  Google Scholar 

  11. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79:340–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kolodkin-Gal I, et al. D-amino acids trigger biofilm disassembly. Science. 2010;328:627–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hochbaum AI, et al. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011;193:5616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCloskey AP, Draper ER, Gilmore BF, Laverty G. Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications. J Pept Sci. 2017;23:131–40.

    Article  CAS  PubMed  Google Scholar 

  15. Gahane AY, et al. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter. 2018;14:2234–44.

    Article  CAS  PubMed  Google Scholar 

  16. Tyldesley HC, Salisbury A, Chen R, Mullin M, Percival SL. Surfactants and their role in biofilm management in chronic wounds. Wounds Int. 2019;10:20–4.

    Google Scholar 

  17. Percival SL, et al. Surfactants: role in biofilm management and cellular behaviour. Int Wound J 2019;16:753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das Ghatak P, Mathew-Steiner SS, Pandey P, Roy S, Sen CK. A surfactant polymer dressing potentiates antimicrobial efficacy in biofilm disruption. Sci Rep. 2018;8:873.

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:2437.

    Google Scholar 

  20. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. Extraction of ECM from bacterial biofilms. Micro Biotechnol. 2015;8:392–403.

    Article  CAS  Google Scholar 

  21. Mak YM, Ho KK. An improved method for the isolation of chromosomal DNA from various bacteria and cyanobacteria. Nucleic Acids Res. 1992;20:4101–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alhede M, Jensen PØ, Givskov M, Thomas B Biofilm of medical importance, vol. XII. Eolss Publishers, 2009.

  23. Percival SL, Mayer D, Salisbury A-M. Efficacy of a surfactant-based wound dressing on biofilm control. Wound Repair Regen. 2017;25:767–73.

    Article  PubMed  Google Scholar 

  24. Simões M, Simões LC, Pereira MO, Vieira MJ. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions. Biofouling 2008;24:35–44.

    Article  PubMed  Google Scholar 

  25. Chandra N, Tyagi VK. Synthesis, properties, and applications of amino acids based surfactants: a review. J Dispers Sci Technol. 2013;34:800–8.

    Article  CAS  Google Scholar 

  26. Singh V, Snigdha K, Singh C, Sinha N, Thakur AK. Understanding the self-assembly of Fmoc–phenylalanine to hydrogel formation. Soft Matter. 2015;11:5353–64.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan Y, Hays MP, Hardwidge PR, Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017;7:14254–61.

    Article  CAS  Google Scholar 

  28. Koo H, Yamada KM. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol. 2016;42:102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinberg N, Kolodkin-Gal I. The matrix reloaded: how sensing the extracellular matrix synchronizes bacterial communities. J Bacteriol. 2015;197:2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karadenizli A, Kolayli F, Ergen K. A novel application of Fourier-transformed infrared spectroscopy: classification of slime from staphylococci. Biofouling 2007;23:63–71.

    Article  CAS  PubMed  Google Scholar 

  31. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    Article  CAS  PubMed  Google Scholar 

  32. Dueholm MS, et al. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen 2013;2:365–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng G, et al. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol. 2015;6:1099.

    PubMed  PubMed Central  Google Scholar 

  34. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012;8:e1002744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The role of functional amyloids in bacterial virulence. J Mol Biol. 2018;430:3657–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo red and amyloids: history and relationship. Biosci Rep. 2019;39:BSR20181415.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4:160696.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010;1804:1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu X, et al. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci Rep. 2018;8:7237.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marquès C, et al. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J Med Microbiol. 2015;64:1021–6.

    Article  PubMed  Google Scholar 

  41. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25:450–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We authors thank IITK, CSIR and MHRD, Government of India for funding the fellowships. This work was supported financially by the Indian Institute of Technology Kanpur, MHRD India (Project No. IITK/BSBE/20100293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash Gahane or Ashwani Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Gahane, A., Singh, V. et al. Antibiofilm activity of Fmoc-phenylalanine against Gram-positive and Gram-negative bacterial biofilms. J Antibiot 74, 407–416 (2021). https://doi.org/10.1038/s41429-021-00409-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00409-2

This article is cited by

Search

Quick links